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Notation

This section provides a concise reference describing the notation used throughout
this book. If you are unfamiliar with any of the corresponding mathematical
concepts, this notation reference may seem intimidating. However, do not despair,
we describe most of these ideas in chapters 2-4.

Numbers and Arrays

a A scalar (integer or real)
a A vector
A A matrix
A A tensor
I, Identity matrix with n rows and n columns

1 Identity matrix with dimensionality implied by
context

el Standard basis vector [0,...,0,1,0,...,0] with a
1 at position ¢

diag(a) A square, diagonal matrix with diagonal entries

given by a
a A scalar random variable
a A vector-valued random variable
A A matrix-valued random variable
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Sets and Graphs
A A set

R The set of real numbers
{0,1} The set containing 0 and 1
{0,1,...,n} The set of all integers between 0 and n

[a, D] The real interval including a and b
(a,b] The real interval excluding a but including b
A\B Set subtraction, i.e., the set containing the ele-
ments of A that are not in B
g A graph

Pag(x;) The parents of x; in G

Indexing

a; Element ¢ of vector a, with indexing starting at 1
a—_;  All elements of vector a except for element ¢

A;; Element i, j of matrix A

Row ¢ of matrix A

A.; Column 7 of matrix A

A;jr Element (i,7,k) of a 3-D tensor A

A..; 2-D slice of a 3-D tensor

a Element 7 of the random vector a

Linear Algebra Operations

AT Transpose of matrix A

AT Moore-Penrose pseudoinverse of A
A ® B Element-wise (Hadamard) product of A and B
det(A) Determinant of A
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Calculus

Derivative of y with respect to x

Partial derivative of y with respect to x
Gradient of y with respect to x
Matrix derivatives of y with respect to X

Tensor containing derivatives of y with respect to
X

Jacobian matrix J € R™*" of f:R"™ — R™
The Hessian matrix of f at input point x

Definite integral over the entire domain of @

Definite integral with respect to & over the set S

Probability and Information Theory

Dxi(P|Q)
N(z; p, %)

The random variables a and b are independent
They are are conditionally independent given c
A probability distribution over a discrete variable

A probability distribution over a continuous vari-
able, or over a variable whose type has not been
specified

Random variable a has distribution P
Expectation of f(x) with respect to P(x)
Variance of f(z) under P(x)

Covariance of f(z) and g(x) under P(x)
Shannon entropy of the random variable x

Kullback-Leibler divergence of P and Q

Gaussian distribution over & with mean p and
covariance X
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Functions
f:A — B The function f with domain A and range B

fog Composition of the functions f and g

f(x;0) A function of & parametrized by 6. Sometimes
we just write f(x) and ignore the argument 6 to
lighten notation.

log x Natural logarithm of x

1
1 + exp(—z)
¢(x) Softplus, log(1 + exp(x))

o(x) Logistic sigmoid,

l|z||p LP norm of x
||| L? norm of
xt Positive part of x, i.e., max(0, z)

1condition  1s 1 if the condition is true, O otherwise

Sometimes we use a function f whose argument is a scalar, but apply it to a vector,
matrix, or tensor: f(x), f(X), or f(X). This means to apply f to the array
element-wise. For example, if C = o (X), then G jr = (X ;) for all valid values
of 7, 7 and k.

Datasets and distributions
Pdata The data generating distribution

Ddata The empirical distribution defined by the training

set
X A set of training examples
) The i-th example (input) from a dataset
y(i) or y(i) The target associated with (%) for supervised learn-
ing
X The m X n matrix with input example £ in row
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Chapter 1

Introduction

Inventors have long dreamed of creating machines that think. This desire dates
back to at least the time of ancient Greece. The mythical figures Pygmalion,
Daedalus, and Hephaestus may all be interpreted as legendary inventors, and
Galatea, Talos, and Pandora may all be regarded as artificial life ( ,
; , ; , 1997).
When programmable computers were first conceived, people wondered whether
they might become intelligent, over a hundred years before one was built ( ,
). Today, artificial intelligence (Al) is a thriving field with many practical
applications and active research topics. We look to intelligent software to automate
routine labor, understand speech or images, make diagnoses in medicine and
support basic scientific research.

In the early days of artificial intelligence, the field rapidly tackled and solved
problems that are intellectually difficult for human beings but relatively straight-
forward for computers—problems that can be described by a list of formal, math-
ematical rules. The true challenge to artificial intelligence proved to be solving
the tasks that are easy for people to perform but hard for people to describe
formally—problems that we solve intuitively, that feel automatic, like recognizing
spoken words or faces in images.

This book is about a solution to these more intuitive problems. This solution is
to allow computers to learn from experience and understand the world in terms of a
hierarchy of concepts, with each concept defined in terms of its relation to simpler
concepts. By gathering knowledge from experience, this approach avoids the need
for human operators to formally specify all of the knowledge that the computer
needs. The hierarchy of concepts allows the computer to learn complicated concepts
by building them out of simpler ones. If we draw a graph showing how these

1



CHAPTER 1. INTRODUCTION

concepts are built on top of each other, the graph is deep, with many layers. For
this reason, we call this approach to Al deep learning.

Many of the early successes of Al took place in relatively sterile and formal
environments and did not require computers to have much knowledge about
the world. For example, IBM’s Deep Blue chess-playing system defeated world
champion Garry Kasparov in 1997 ( , ). Chess is of course a very simple
world, containing only sixty-four locations and thirty-two pieces that can move
in only rigidly circumscribed ways. Devising a successful chess strategy is a
tremendous accomplishment, but the challenge is not due to the difficulty of
describing the set of chess pieces and allowable moves to the computer. Chess
can be completely described by a very brief list of completely formal rules, easily
provided ahead of time by the programmer.

[ronically, abstract and formal tasks that are among the most difficult mental
undertakings for a human being are among the easiest for a computer. Computers
have long been able to defeat even the best human chess player, but are only
recently matching some of the abilities of average human beings to recognize objects
or speech. A person’s everyday life requires an immense amount of knowledge
about the world. Much of this knowledge is subjective and intuitive, and therefore
difficult to articulate in a formal way. Computers need to capture this same
knowledge in order to behave in an intelligent way. One of the key challenges in
artificial intelligence is how to get this informal knowledge into a computer.

Several artificial intelligence projects have sought to hard-code knowledge about
the world in formal languages. A computer can reason about statements in these
formal languages automatically using logical inference rules. This is known as the
knowledge base approach to artificial intelligence. None of these projects has led to
a major success. One of the most famous such projects is Cyc ( )

). Cyc is an inference engine and a database of statements in a language
called CycL. These statements are entered by a staff of human supervisors. It is an
unwieldy process. People struggle to devise formal rules with enough complexity
to accurately describe the world. For example, Cyc failed to understand a story
about a person named Fred shaving in the morning ( ) ). Its inference
engine detected an inconsistency in the story: it knew that people do not have
electrical parts, but because Fred was holding an electric razor, it believed the
entity “FredWhileShaving” contained electrical parts. It therefore asked whether
Fred was still a person while he was shaving.

The difficulties faced by systems relying on hard-coded knowledge suggest that
AT systems need the ability to acquire their own knowledge, by extracting patterns
from raw data. This capability is known as machine learning. The introduction



CHAPTER 1. INTRODUCTION

of machine learning allowed computers to tackle problems involving knowledge
of the real world and make decisions that appear subjective. A simple machine
learning algorithm called logistic regression can determine whether to recommend
cesarean delivery ( , ). A simple machine learning algorithm
called naive Bayes can separate legitimate e-mail from spam e-mail.

The performance of these simple machine learning algorithms depends heavily
on the representation of the data they are given. For example, when logistic
regression is used to recommend cesarean delivery, the Al system does not examine
the patient directly. Instead, the doctor tells the system several pieces of relevant
information, such as the presence or absence of a uterine scar. Each piece of
information included in the representation of the patient is known as a feature.
Logistic regression learns how each of these features of the patient correlates with
various outcomes. However, it cannot influence the way that the features are
defined in any way. If logistic regression was given an MRI scan of the patient,
rather than the doctor’s formalized report, it would not be able to make useful
predictions. Individual pixels in an MRI scan have negligible correlation with any
complications that might occur during delivery.

This dependence on representations is a general phenomenon that appears
throughout computer science and even daily life. In computer science, opera-
tions such as searching a collection of data can proceed exponentially faster if
the collection is structured and indexed intelligently. People can easily perform
arithmetic on Arabic numerals, but find arithmetic on Roman numerals much
more time-consuming. It is not surprising that the choice of representation has an
enormous effect on the performance of machine learning algorithms. For a simple
visual example, see Fig. 1.1.

Many artificial intelligence tasks can be solved by designing the right set of
features to extract for that task, then providing these features to a simple machine
learning algorithm. For example, a useful feature for speaker identification from
sound is an estimate of the size of speaker’s vocal tract. It therefore gives a strong
clue as to whether the speaker is a man, woman, or child.

However, for many tasks, it is difficult to know what features should be extracted.
For example, suppose that we would like to write a program to detect cars in
photographs. We know that cars have wheels, so we might like to use the presence
of a wheel as a feature. Unfortunately, it is difficult to describe exactly what a
wheel looks like in terms of pixel values. A wheel has a simple geometric shape but
its image may be complicated by shadows falling on the wheel, the sun glaring off
the metal parts of the wheel, the fender of the car or an object in the foreground
obscuring part of the wheel, and so on.
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Figure 1.1: Example of different representations: suppose we want to separate two
categories of data by drawing a line between them in a scatterplot. In the plot on the left,
we represent some data using Cartesian coordinates, and the task is impossible. In the plot
on the right, we represent the data with polar coordinates and the task becomes simple to
solve with a vertical line. (Figure produced in collaboration with David Warde-Farley)

One solution to this problem is to use machine learning to discover not only
the mapping from representation to output but also the representation itself.
This approach is known as representation learning. Learned representations often
result in much better performance than can be obtained with hand-designed
representations. They also allow Al systems to rapidly adapt to new tasks, with
minimal human intervention. A representation learning algorithm can discover a
good set of features for a simple task in minutes, or a complex task in hours to
months. Manually designing features for a complex task requires a great deal of
human time and effort; it can take decades for an entire community of researchers.

The quintessential example of a representation learning algorithm is the au-
toencoder. An autoencoder is the combination of an encoder function that converts
the input data into a different representation, and a decoder function that converts
the new representation back into the original format. Autoencoders are trained to
preserve as much information as possible when an input is run through the encoder
and then the decoder, but are also trained to make the new representation have
various nice properties. Different kinds of autoencoders aim to achieve different
kinds of properties.

When designing features or algorithms for learning features, our goal is usually
to separate the factors of variation that explain the observed data. In this context,
we use the word “factors” simply to refer to separate sources of influence; the factors
are usually not combined by multiplication. Such factors are often not quantities
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that are directly observed. Instead, they may exist either as unobserved objects
or unobserved forces in the physical world that affect observable quantities. They
may also exist as constructs in the human mind that provide useful simplifying
explanations or inferred causes of the observed data. They can be thought of as
concepts or abstractions that help us make sense of the rich variability in the data.
When analyzing a speech recording, the factors of variation include the speaker’s
age, their sex, their accent and the words that they are speaking. When analyzing
an image of a car, the factors of variation include the position of the car, its color,
and the angle and brightness of the sun.

A major source of difficulty in many real-world artificial intelligence applications
is that many of the factors of variation influence every single piece of data we are
able to observe. The individual pixels in an image of a red car might be very close
to black at night. The shape of the car’s silhouette depends on the viewing angle.
Most applications require us to disentangle the factors of variation and discard the
ones that we do not care about.

Of course, it can be very difficult to extract such high-level, abstract features
from raw data. Many of these factors of variation, such as a speaker’s accent,
can be identified only using sophisticated, nearly human-level understanding of
the data. When it is nearly as difficult to obtain a representation as to solve the
original problem, representation learning does not, at first glance, seem to help us.

Deep learning solves this central problem in representation learning by introduc-
ing representations that are expressed in terms of other, simpler representations.
Deep learning allows the computer to build complex concepts out of simpler con-
cepts. Fig. 1.2 shows how a deep learning system can represent the concept of an
image of a person by combining simpler concepts, such as corners and contours,
which are in turn defined in terms of edges.

The quintessential example of a deep learning model is the feedforward deep
network or multilayer perceptron (MLP). A multilayer perceptron is just a mathe-
matical function mapping some set of input values to output values. The function
is formed by composing many simpler functions. We can think of each application
of a different mathematical function as providing a new representation of the input.

The idea of learning the right representation for the data provides one perspec-
tive on deep learning. Another perspective on deep learning is that depth allows the
computer to learn a multi-step computer program. Each layer of the representation
can be thought of as the state of the computer’s memory after executing another
set of instructions in parallel. Networks with greater depth can execute more
instructions in sequence. Sequential instructions offer great power because later
instructions can refer back to the results of earlier instructions. According to this
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Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the wvisible layer, so named because it contains the variables that we
are able to observe. Then a series of hidden layers extracts increasingly abstract features
from the image. These layers are called “hidden” because their values are not given in
the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).
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Figure 1.3: Illustration of computational graphs mapping an input to an output where
each node performs an operation. Depth is the length of the longest path from input to
output but depends on the definition of what constitutes a possible computational step.

The computation depicted in these graphs is the output of a logistic regression model,
o(w’ x), where o is the logistic sigmoid function. If we use addition, multiplication and

logistic sigmoids as the elements of our computer language, then this model has depth
three. If we view logistic regression as an element itself, then this model has depth one.

view of deep learning, not all of the information in a layer’s activations necessarily
encodes factors of variation that explain the input. The representation also stores
state information that helps to execute a program that can make sense of the input.
This state information could be analogous to a counter or pointer in a traditional
computer program. It has nothing to do with the content of the input specifically,
but it helps the model to organize its processing.

There are two main ways of measuring the depth of a model. The first view is
based on the number of sequential instructions that must be executed to evaluate
the architecture. We can think of this as the length of the longest path through
a flow chart that describes how to compute each of the model’s outputs given
its inputs. Just as two equivalent computer programs will have different lengths
depending on which language the program is written in, the same function may be
drawn as a flowchart with different depths depending on which functions we allow
to be used as individual steps in the flowchart. Fig. 1.3 illustrates how this choice
of language can give two different measurements for the same architecture.

Another approach, used by deep probabilistic models, regards the depth of a
model as being not the depth of the computational graph but the depth of the
graph describing how concepts are related to each other. In this case, the depth
of the flowchart of the computations needed to compute the representation of
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each concept may be much deeper than the graph of the concepts themselves.
This is because the system’s understanding of the simpler concepts can be refined
given information about the more complex concepts. For example, an Al system
observing an image of a face with one eye in shadow may initially only see one eye.
After detecting that a face is present, it can then infer that a second eye is probably
present as well. In this case, the graph of concepts only includes two layers—a
layer for eyes and a layer for faces—but the graph of computations includes 2n
layers if we refine our estimate of each concept given the other n times.

Because it is not always clear which of these two views—the depth of the
computational graph, or the depth of the probabilistic modeling graph—is most
relevant, and because different people choose different sets of smallest elements
from which to construct their graphs, there is no single correct value for the
depth of an architecture, just as there is no single correct value for the length of
a computer program. Nor is there a consensus about how much depth a model
requires to qualify as “deep.” However, deep learning can safely be regarded as the
study of models that either involve a greater amount of composition of learned
functions or learned concepts than traditional machine learning does.

To summarize, deep learning, the subject of this book, is an approach to Al.
Specifically, it is a type of machine learning, a technique that allows computer
systems to improve with experience and data. According to the authors of this
book, machine learning is the only viable approach to building AI systems that
can operate in complicated, real-world environments. Deep learning is a particular
kind of machine learning that achieves great power and flexibility by learning to
represent the world as a nested hierarchy of concepts, with each concept defined in
relation to simpler concepts, and more abstract representations computed in terms
of less abstract ones. Fig. 1.4 illustrates the relationship between these different
AT disciplines. Fig. 1.5 gives a high-level schematic of how each works.

1.1 Who Should Read This Book?

This book can be useful for a variety of readers, but we wrote it with two main
target audiences in mind. One of these target audiences is university students
(undergraduate or graduate) learning about machine learning, including those who
are beginning a career in deep learning and artificial intelligence research. The
other target audience is software engineers who do not have a machine learning
or statistics background, but want to rapidly acquire one and begin using deep
learning in their product or platform. Deep learning has already proven useful in
many software disciplines including computer vision, speech and audio processing,

8



CHAPTER 1. INTRODUCTION

Example:
Shallow
autoencoders

Deep learning
E le:
Example: xampie

MLPs Logistic

regression

Representation learning

Machine learning

Example:
Knowledge
bases

Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to Al. Each section of the Venn diagram includes an example of an Al technology.
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other within different AT disciplines. Shaded boxes indicate components that are able to
learn from data.
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natural language processing, robotics, bioinformatics and chemistry, video games,
search engines, online advertising and finance.

This book has been organized into three parts in order to best accommodate a
variety of readers. Part I introduces basic mathematical tools and machine learning
concepts. Part I describes the most established deep learning algorithms that are
essentially solved technologies. Part III describes more speculative ideas that are
widely believed to be important for future research in deep learning.

Readers should feel free to skip parts that are not relevant given their interests
or background. Readers familiar with linear algebra, probability, and fundamental
machine learning concepts can skip Part [, for example, while readers who just want
to implement a working system need not read beyond Part II. To help choose which
chapters to read, Fig. 1.6 provides a flowchart showing the high-level organization
of the book.

We do assume that all readers come from a computer science background. We
assume familiarity with programming, a basic understanding of computational
performance issues, complexity theory, introductory level calculus and some of the
terminology of graph theory.

1.2 Historical Trends in Deep Learning

It is easiest to understand deep learning with some historical context. Rather than
providing a detailed history of deep learning, we identify a few key trends:

e Deep learning has had a long and rich history, but has gone by many names
reflecting different philosophical viewpoints, and has waxed and waned in
popularity.

e Deep learning has become more useful as the amount of available training
data has increased.

e Deep learning models have grown in size over time as computer hardware
and software infrastructure for deep learning has improved.

e Deep learning has solved increasingly complicated applications with increasing
accuracy over time.

11
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Figure 1.6: The high-level organization of the book. An arrow from one chapter to another
indicates that the former chapter is prerequisite material for understanding the latter.
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1.2.1 The Many Names and Changing Fortunes of Neural Net-
works

We expect that many readers of this book have heard of deep learning as an
exciting new technology, and are surprised to see a mention of “history” in a book
about an emerging field. In fact, deep learning dates back to the 1940s. Deep
learning only appears to be new, because it was relatively unpopular for several
years preceding its current popularity, and because it has gone through many
different names, and has only recently become called “deep learning.” The field
has been rebranded many times, reflecting the influence of different researchers
and different perspectives.

A comprehensive history of deep learning is beyond the scope of this textbook.
However, some basic context is useful for understanding deep learning. Broadly
speaking, there have been three waves of development of deep learning: deep learn-
ing known as cybernetics in the 1940s-1960s, deep learning known as connectionism
in the 1980s—1990s, and the current resurgence under the name deep learning
beginning in 2006. This is quantitatively illustrated in Fig. 1.7.

Some of the earliest learning algorithms we recognize today were intended
to be computational models of biological learning, i.e. models of how learning
happens or could happen in the brain. As a result, one of the names that deep
learning has gone by is artificial neural networks (ANNs). The corresponding
perspective on deep learning models is that they are engineered systems inspired
by the biological brain (whether the human brain or the brain of another animal).
While the kinds of neural networks used for machine learning have sometimes
been used to understand brain function ( , ), they are
generally not designed to be realistic models of biological function. The neural
perspective on deep learning is motivated by two main ideas. One idea is that
the brain provides a proof by example that intelligent behavior is possible, and a
conceptually straightforward path to building intelligence is to reverse engineer the
computational principles behind the brain and duplicate its functionality. Another
perspective is that it would be deeply interesting to understand the brain and the
principles that underlie human intelligence, so machine learning models that shed
light on these basic scientific questions are useful apart from their ability to solve
engineering applications.

The modern term “deep learning” goes beyond the neuroscientific perspective
on the current breed of machine learning models. It appeals to a more general
principle of learning multiple levels of composition, which can be applied in machine
learning frameworks that are not necessarily neurally inspired.
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Figure 1.7: The figure shows two of the three historical waves of artificial neural nets
research, as measured by the frequency of the phrases “cybernetics” and “connectionism” or
“neural networks” according to Google Books (the third wave is too recent to appear). The
first wave started with cybernetics in the 1940s—1960s, with the development of theories

of biological learning ( , ; , ) and implementations of
the first models such as the perceptron ( , ) allowing the training of a single
neuron. The second wave started with the connectionist approach of the 1980-1995 period,
with back-propagation ( , ) to train a neural network with one or two

hidden layers. The current and third wave, deep learning, started around 2006 (

, ; , ; , ), and is just now appearing in book
form as of 2016. The other two waves similarly appeared in book form much later than
the corresponding scientific activity occurred.
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The earliest predecessors of modern deep learning were simple linear models
motivated from a neuroscientific perspective. These models were designed to
take a set of n input values z1,...,x, and associate them with an output .
These models would learn a set of weights wq, ..., w, and compute their output
f(x,w) = z1wy + -+ + xpw,. This first wave of neural networks research was
known as cybernetics, as illustrated in Fig. 1.7.

The McCulloch-Pitts Neuron ( : ) was an early model
of brain function. This linear model could recognize two different categories of
inputs by testing whether f (x,w) is positive or negative. Of course, for the model
to correspond to the desired definition of the categories, the weights needed to be
set correctly. These weights could be set by the human operator. In the 1950s,
the perceptron ( , , ) became the first model that could learn
the weights defining the categories given examples of inputs from each category.
The adaptive linear element (ADALINE), which dates from about the same time,
simply returned the value of f(x) itself to predict a real number (

, ), and could also learn to predict these numbers from data.

These simple learning algorithms greatly affected the modern landscape of
machine learning. The training algorithm used to adapt the weights of the ADA-
LINE was a special case of an algorithm called stochastic gradient descent. Slightly
modified versions of the stochastic gradient descent algorithm remain the dominant
training algorithms for deep learning models today.

Models based on the f(x,w) used by the perceptron and ADALINE are called
linear models. These models remain some of the most widely used machine learning
models, though in many cases they are trained in different ways than the original
models were trained.

Linear models have many limitations. Most famously, they cannot learn the
XOR function, where f([0,1],w) = 1 and f([1,0],w) = 1 but f([1,1],w) =0
and f([0,0],w) = 0. Critics who observed these flaws in linear models caused
a backlash against biologically inspired learning in general ( ,

). This was the first major dip in the popularity of neural networks.

Today, neuroscience is regarded as an important source of inspiration for deep
learning researchers, but it is no longer the predominant guide for the field.

The main reason for the diminished role of neuroscience in deep learning
research today is that we simply do not have enough information about the brain
to use it as a guide. To obtain a deep understanding of the actual algorithms used
by the brain, we would need to be able to monitor the activity of (at the very
least) thousands of interconnected neurons simultaneously. Because we are not
able to do this, we are far from understanding even some of the most simple and
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well-studied parts of the brain ( : ).

Neuroscience has given us a reason to hope that a single deep learning algorithm
can solve many different tasks. Neuroscientists have found that ferrets can learn to
“see” with the auditory processing region of their brain if their brains are rewired
to send visual signals to that area ( , ). This suggests that
much of the mammalian brain might use a single algorithm to solve most of the
different tasks that the brain solves. Before this hypothesis, machine learning
research was more fragmented, with different communities of researchers studying
natural language processing, vision, motion planning and speech recognition. Today,
these application communities are still separate, but it is common for deep learning
research groups to study many or even all of these application areas simultaneously.

We are able to draw some rough guidelines from neuroscience. The basic idea of
having many computational units that become intelligent only via their interactions
with each other is inspired by the brain. The Neocognitron ( : )
introduced a powerful model architecture for processing images that was inspired
by the structure of the mammalian visual system and later became the basis for

the modern convolutional network ( , ), as we will see in Sec. 9.10.
Most neural networks today are based on a model neuron called the rectified linear
unit. The original Cognitron ( , ) introduced a more complicated

version that was highly inspired by our knowledge of brain function. The simplified
modern version was developed incorporating ideas from many viewpoints, with
( ) and ( ) citing neuroscience as an influence, and
( ) citing more engineering-oriented influences. While neuroscience
is an important source of inspiration, it need not be taken as a rigid guide. We
know that actual neurons compute very different functions than modern rectified
linear units, but greater neural realism has not yet led to an improvement in
machine learning performance. Also, while neuroscience has successfully inspired
several neural network architectures, we do not yet know enough about biological
learning for neuroscience to offer much guidance for the learning algorithms we
use to train these architectures.

Media accounts often emphasize the similarity of deep learning to the brain.
While it is true that deep learning researchers are more likely to cite the brain as an
influence than researchers working in other machine learning fields such as kernel
machines or Bayesian statistics, one should not view deep learning as an attempt
to simulate the brain. Modern deep learning draws inspiration from many fields,
especially applied math fundamentals like linear algebra, probability, information
theory, and numerical optimization. While some deep learning researchers cite
neuroscience as an important source of inspiration, others are not concerned with

16



CHAPTER 1. INTRODUCTION

neuroscience at all.

It is worth noting that the effort to understand how the brain works on
an algorithmic level is alive and well. This endeavor is primarily known as
“computational neuroscience” and is a separate field of study from deep learning.
It is common for researchers to move back and forth between both fields. The
field of deep learning is primarily concerned with how to build computer systems
that are able to successfully solve tasks requiring intelligence, while the field of
computational neuroscience is primarily concerned with building more accurate
models of how the brain actually works.

In the 1980s, the second wave of neural network research emerged in great part
via a movement called connectionism or parallel distributed processing (

, : ) ). Connectionism arose in the context of
cognitive science. Cognitive science is an interdisciplinary approach to understand-
ing the mind, combining multiple different levels of analysis. During the early
1980s, most cognitive scientists studied models of symbolic reasoning. Despite their
popularity, symbolic models were difficult to explain in terms of how the brain
could actually implement them using neurons. The connectionists began to study
models of cognition that could actually be grounded in neural implementations
( , ), reviving many ideas dating back to the work of
psychologist Donald Hebb in the 1940s ( : ).

The central idea in connectionism is that a large number of simple computational
units can achieve intelligent behavior when networked together. This insight
applies equally to neurons in biological nervous systems and to hidden units in
computational models.

Several key concepts arose during the connectionism movement of the 1980s
that remain central to today’s deep learning.

One of these concepts is that of distributed representation ( , ).
This is the idea that each input to a system should be represented by many features,
and each feature should be involved in the representation of many possible inputs.
For example, suppose we have a vision system that can recognize cars, trucks, and
birds and these objects can each be red, green, or blue. One way of representing
these inputs would be to have a separate neuron or hidden unit that activates for
each of the nine possible combinations: red truck, red car, red bird, green truck, and
so on. This requires nine different neurons, and each neuron must independently
learn the concept of color and object identity. One way to improve on this situation
is to use a distributed representation, with three neurons describing the color and
three neurons describing the object identity. This requires only six neurons total
instead of nine, and the neuron describing redness is able to learn about redness
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from images of cars, trucks and birds, not only from images of one specific category
of objects. The concept of distributed representation is central to this book, and
will be described in greater detail in Chapter 15.

Another major accomplishment of the connectionist movement was the suc-
cessful use of back-propagation to train deep neural networks with internal repre-
sentations and the popularization of the back-propagation algorithm (

, : , ). This algorithm has waxed and waned in popularity
but as of this writing is currently the dominant approach to training deep models.

During the 1990s, researchers made important advances in modeling sequences

with neural networks. ( ) and ( ) identified some
of the fundamental mathematical difficulties in modeling long sequences, described
in Sec. 10.7. ( ) introduced the long short-term

memory or LSTM network to resolve some of these difficulties. Today, the LSTM
is widely used for many sequence modeling tasks, including many natural language
processing tasks at Google.

The second wave of neural networks research lasted until the mid-1990s. Ven-
tures based on neural networks and other Al technologies began to make unrealisti-
cally ambitious claims while seeking investments. When Al research did not fulfill
these unreasonable expectations, investors were disappointed. Simultaneously,
other fields of machine learning made advances. Kernel machines ( :

; , ; , ) and graphical models (

, ) both achieved good results on many important tasks. These two factors

led to a decline in the popularity of neural networks that lasted until 2007.

During this time, neural networks continued to obtain impressive performance
on some tasks ( , : , ). The Canadian Institute
for Advanced Research (CIFAR) helped to keep neural networks research alive
via its Neural Computation and Adaptive Perception (NCAP) research initiative.
This program united machine learning research groups led by Geoffrey Hinton
at University of Toronto, Yoshua Bengio at University of Montreal, and Yann
LeCun at New York University. The CIFAR NCAP research initiative had a
multi-disciplinary nature that also included neuroscientists and experts in human
and computer vision.

At this point in time, deep networks were generally believed to be very difficult
to train. We now know that algorithms that have existed since the 1980s work
quite well, but this was not apparent circa 2006. The issue is perhaps simply that
these algorithms were too computationally costly to allow much experimentation
with the hardware available at the time.

The third wave of neural networks research began with a breakthrough in
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2006. Geoffrey Hinton showed that a kind of neural network called a deep belief
network could be efficiently trained using a strategy called greedy layer-wise
pretraining ( , ), which will be described in more detail in Sec.
15.1. The other CIFAR-affiliated research groups quickly showed that the same
strategy could be used to train many other kinds of deep networks ( ,

; , ) and systematically helped to improve generalization
on test examples. This wave of neural networks research popularized the use of the
term deep learning to emphasize that researchers were now able to train deeper
neural networks than had been possible before, and to focus attention on the
theoretical importance of depth ( , : ,

: , : , ). At this time, deep neural
networks outperformed competing Al systems based on other machine learning
technologies as well as hand-designed functionality. This third wave of popularity
of neural networks continues to the time of this writing, though the focus of deep
learning research has changed dramatically within the time of this wave. The
third wave began with a focus on new unsupervised learning techniques and the
ability of deep models to generalize well from small datasets, but today there is
more interest in much older supervised learning algorithms and the ability of deep
models to leverage large labeled datasets.

1.2.2 Increasing Dataset Sizes

One may wonder why deep learning has only recently become recognized as a
crucial technology though the first experiments with artificial neural networks were
conducted in the 1950s. Deep learning has been successfully used in commercial
applications since the 1990s, but was often regarded as being more of an art than
a technology and something that only an expert could use, until recently. It is true
that some skill is required to get good performance from a deep learning algorithm.
Fortunately, the amount of skill required reduces as the amount of training data
increases. The learning algorithms reaching human performance on complex tasks
today are nearly identical to the learning algorithms that struggled to solve toy
problems in the 1980s, though the models we train with these algorithms have
undergone changes that simplify the training of very deep architectures. The most
important new development is that today we can provide these algorithms with
the resources they need to succeed. Fig. 1.8 shows how the size of benchmark
datasets has increased remarkably over time. This trend is driven by the increasing
digitization of society. As more and more of our activities take place on computers,
more and more of what we do is recorded. As our computers are increasingly
networked together, it becomes easier to centralize these records and curate them
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into a dataset appropriate for machine learning applications. The age of “Big
Data” has made machine learning much easier because the key burden of statistical
estimation—generalizing well to new data after observing only a small amount
of data—has been considerably lightened. As of 2016, a rough rule of thumb
is that a supervised deep learning algorithm will generally achieve acceptable
performance with around 5,000 labeled examples per category, and will match or
exceed human performance when trained with a dataset containing at least 10
million labeled examples. Working successfully with datasets smaller than this is
an important research area, focusing in particular on how we can take advantage
of large quantities of unlabeled examples, with unsupervised or semi-supervised
learning.

1.2.3 Increasing Model Sizes

Another key reason that neural networks are wildly successful today after enjoying
comparatively little success since the 1980s is that we have the computational
resources to run much larger models today. One of the main insights of connection-
ism is that animals become intelligent when many of their neurons work together.
An individual neuron or small collection of neurons is not particularly useful.

Biological neurons are not especially densely connected. As seen in Fig. 1.10,
our machine learning models have had a number of connections per neuron that
was within an order of magnitude of even mammalian brains for decades.

In terms of the total number of neurons, neural networks have been astonishingly
small until quite recently, as shown in Fig. 1.11. Since the introduction of hidden
units, artificial neural networks have doubled in size roughly every 2.4 years. This
growth is driven by faster computers with larger memory and by the availability
of larger datasets. Larger networks are able to achieve higher accuracy on more
complex tasks. This trend looks set to continue for decades. Unless new technologies
allow faster scaling, artificial neural networks will not have the same number of
neurons as the human brain until at least the 2050s. Biological neurons may
represent more complicated functions than current artificial neurons, so biological
neural networks may be even larger than this plot portrays.

In retrospect, it is not particularly surprising that neural networks with fewer
neurons than a leech were unable to solve sophisticated artificial intelligence prob-
lems. Even today’s networks, which we consider quite large from a computational

systems point of view, are smaller than the nervous system of even relatively
primitive vertebrate animals like frogs.

The increase in model size over time, due to the availability of faster CPUs,
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Increasing dataset size over time
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Figure 1.8: Dataset sizes have increased greatly over time. In the early 1900s, statisticians
studied datasets using hundreds or thousands of manually compiled measurements (Garson,
1900; Gosset, 1908; Anderson, 1935; Fisher, 1936). In the 1950s through 1980s, the pioneers
of blologlcally inspired machine learning often worked with small, synthetic datasets, such
as low-resolution bitmaps of letters, that were designed to incur low computational cost and
demonstrate that neural networks were able to learn specific kinds of functions (Widrow
and Hoff, 1960; Rumelhart ef al., 1986b). In the 1980s and 1990s, machine learning
became more statistical in nature and began to leverage larger datasets containing tens
of thousands of examples such as the MNIST dataset (shown in Fig. 1.9) of scans of
handwritten numbers (LeCun ef al, 1998b). In the first decade of the 2000s, more
sophisticated datasets of this same size, such as the CIFAR-10 dataset (1\11/11(\\'%1{\' and
Hinton, 2009) continued to be produced. Toward the end of that decade and throughout
the first half of the 2010s, significantly larger datasets, containing hundreds of thousands
to tens of millions of examples, completely changed what was possible with deep learning.
These datasets included the public Street View House Numbers dataset (Netzer ef al.,
2 ()ll) various versions of the ImageNet dataset (Deng ef al., ‘>( 09, 2010a; Russakovsky
¢t al., 2014a), and the Sports-1M dataset (IKarpathy et al., 14) At the top of the
graph, we see that datasets of translated sentences, such as IBM s dataset constructed
from the Canadian Hansard (Brown e¢f al., 1990) and the WMT 2014 English to French
dataset (Schwenk, 20141) are typically far ahead of other dataset sizes.
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Figure 1.9: Example inputs from the MNIST dataset. The “NIST” stands for National
Institute of Standards and Technology, the agency that originally collected this data.
The “M” stands for “modified,” since the data has been preprocessed for easier use with
machine learning algorithms. The MNIST dataset consists of scans of handwritten digits
and associated labels describing which digit 0-9 is contained in each image. This simple
classification problem is one of the simplest and most widely used tests in deep learning
research. It remains popular despite being quite easy for modern techniques to solve.
Geoffrey Hinton has described it as “the drosophila of machine learning,” meaning that
it allows machine learning researchers to study their algorithms in controlled laboratory
conditions, much as biologists often study fruit flies.
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the advent of general purpose GPUs (described in Sec. 12.1.2), faster network
connectivity and better software infrastructure for distributed computing, is one of
the most important trends in the history of deep learning. This trend is generally
expected to continue well into the future.

1.2.4 Increasing Accuracy, Complexity and Real-World Impact

Since the 1980s, deep learning has consistently improved in its ability to provide
accurate recognition or prediction. Moreover, deep learning has consistently been
applied with success to broader and broader sets of applications.

The earliest deep models were used to recognize individual objects in tightly
cropped, extremely small images ( ) ). Since then there has
been a gradual increase in the size of images neural networks could process. Modern
object recognition networks process rich high-resolution photographs and do not
have a requirement that the photo be cropped near the object to be recognized
( , ). Similarly, the earliest networks could only recognize
two kinds of objects (or in some cases, the absence or presence of a single kind of
object), while these modern networks typically recognize at least 1,000 different
categories of objects. The largest contest in object recognition is the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) held each year. A dramatic
moment in the meteoric rise of deep learning came when a convolutional network
won this challenge for the first time and by a wide margin, bringing down the
state-of-the-art top-5 error rate from 26.1% to 15.3% ( , ),
meaning that the convolutional network produces a ranked list of possible categories
for each image and the correct category appeared in the first five entries of this
list for all but 15.3% of the test examples. Since then, these competitions are
consistently won by deep convolutional nets, and as of this writing, advances in
deep learning have brought the latest top-5 error rate in this contest down to 3.6%,
as shown in Fig. 1.12.

Deep learning has also had a dramatic impact on speech recognition. After
improving throughout the 1990s, the error rates for speech recognition stagnated
starting in about 2000. The introduction of deep learning ( , ;

; ; ) to speech recognition resulted
in a sudden drop of error rates, with some error rates cut in half. We will explore
this history in more detail in Sec. 12.3.

Y Y Y Y Y

Deep networks have also had spectacular successes for pedestrian detection and
image segmentation ( , ; , X ,
) and yielded superhuman performance in traffic sign classification (
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Number of connections per neuron over time
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Figure 1.10: Initially, the number of connections between neurons in artificial neural
networks was limited by hardware capabilities. Today, the number of connections between
neurons is mostly a design consideration. Some artificial neural networks have nearly as
many connections per neuron as a cat, and it is quite common for other neural networks
to have as many connections per neuron as smaller mammals like mice. Even the human
brain does not have an exorbitant amount of connections per neuron. Biological neural
network sizes from Wikipedia (2015).

1. Adaptive linear element (Widrow and Hoff, 1960)
2. Neocognitron (Fukushima, 1980)

3. GPU-accelerated convolutional network (Chellapilla et al., 2006)
4. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)
5. Unsupervised convolutional network (Jarrett et al., 2009)
6. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)
7. Distributed autoencoder (Le et al., 2012)

8. Multi-GPU convolutional network (Krizhevsky et al., 2012)
9. COTS HPC unsupervised convolutional network (Coates et al., 2013)
10. GoogLeNet (Szegedy et al., 2014a)
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: )-

At the same time that the scale and accuracy of deep networks has increased,
so has the complexity of the tasks that they can solve. ( )
showed that neural networks could learn to output an entire sequence of characters
transcribed from an image, rather than just identifying a single object. Previously,
it was widely believed that this kind of learning required labeling of the individual
elements of the sequence ( ) ). Recurrent neural networks,
such as the LSTM sequence model mentioned above, are now used to model
relationships between sequences and other sequences rather than just fixed inputs.
This sequence-to-sequence learning seems to be on the cusp of revolutionizing
another application: machine translation ( , ; ,

).

This trend of increasing complexity has been pushed to its logical conclusion
with the introduction of neural Turing machines ( : ) that learn
to read from memory cells and write arbitrary content to memory cells. Such
neural networks can learn simple programs from examples of desired behavior. For
example, they can learn to sort lists of numbers given examples of scrambled and
sorted sequences. This self-programming technology is in its infancy, but in the
future could in principle be applied to nearly any task.

Another crowning achievement of deep learning is its extension to the domain
of reinforcement learning. In the context of reinforcement learning, an autonomous
agent must learn to perform a task by trial and error, without any guidance from
the human operator. DeepMind demonstrated that a reinforcement learning system
based on deep learning is capable of learning to play Atari video games, reaching
human-level performance on many tasks ( , ). Deep learning has
also significantly improved the performance of reinforcement learning for robotics

( , 2015).
Many of these applications of deep learning are highly profitable. Deep learning

is now used by many top technology companies including Google, Microsoft,
Facebook, IBM, Baidu, Apple, Adobe, Netflix, NVIDIA and NEC.

Advances in deep learning have also depended heavily on advances in software
infrastructure. Software libraries such as Theano ( : ;

, ), PyLearn2 ( , ), Torch ( , ),
DistBelief ( : ), Caffe (Jia, ), MXNet ( : ), and
TensorFlow ( , ) have all supported important research projects or

commercial products.

Deep learning has also made contributions back to other sciences. Modern
convolutional networks for object recognition provide a model of visual processing
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that neuroscientists can study ( , ). Deep learning also provides useful
tools for processing massive amounts of data and making useful predictions in
scientific fields. It has been successfully used to predict how molecules will interact
in order to help pharmaceutical companies design new drugs ( , ),
to search for subatomic particles ( , ), and to automatically parse
microscope images used to construct a 3-D map of the human brain (

) ). We expect deep learning to appear in more and more scientific
fields in the future.

In summary, deep learning is an approach to machine learning that has drawn
heavily on our knowledge of the human brain, statistics and applied math as it
developed over the past several decades. In recent years, it has seen tremendous
growth in its popularity and usefulness, due in large part to more powerful com-
puters, larger datasets and techniques to train deeper networks. The years ahead
are full of challenges and opportunities to improve deep learning even further and
bring it to new frontiers.
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Increasing neural network size over time
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Figure 1.11: Since the introduction of hidden units, artificial neural networks have doubled
in size roughly every 2.4 years. Biological neural network sizes from Wikipedia (2015).

1. Perceptron (Rosenblatt, 1958, 1962)
2. Adaptive linear element (Widrow and Hoff, 1960)
3. Neocognitron (Fukushima, 1980)
4. Early back-propagation network (Rumelhart et al., 1986b)
5. Recurrent neural network for speech recognition (Robinson and Fallside, 1991)
6. Multilayer perceptron for speech recognition (Bengio et al., 1991)
7. Mean field sigmoid belief network (Saul et al., 1996)
8. LeNet-5 (LeCun et al., 1998b)
9. Echo state network (Jaeger and Haas, 2004)
10. Deep belief network (Hinton et al., 2006)
11. GPU-accelerated convolutional network (Chellapilla et al., 2006)
12. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)
13. GPU-accelerated deep belief network (Raina et al., 2009)
14. Unsupervised convolutional network (Jarrett et al., 2009)
15. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)
16. OMP-1 network (Coates and Ng, 2011)
17. Distributed autoencoder (Le et al., 2012)
18. Multi-GPU convolutional network (Krizhevsky et al., 2012)
19. COTS HPC unsupervised convolutional network (Coates et al., 2013)
20. GoogLeNet (Szegedy et al., 2014a)
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Figure 1.12: Since deep networks reached the scale necessary to compete in the ImageNet
Large Scale Visual Recognition Challenge, they have consistently won the competition
every year, and yielded lower and lower error rates each time. Data from

( ) and (2015).
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Part 1

Applied Math and Machine
Learning Basics
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This part of the book introduces the basic mathematical concepts needed to
understand deep learning. We begin with general ideas from applied math that
allow us to define functions of many variables, find the highest and lowest points
on these functions and quantify degrees of belief.

Next, we describe the fundamental goals of machine learning. We describe how
to accomplish these goals by specifying a model that represents certain beliefs,
designing a cost function that measures how well those beliefs correspond with
reality and using a training algorithm to minimize that cost function.

This elementary framework is the basis for a broad variety of machine learning
algorithms, including approaches to machine learning that are not deep. In the
subsequent parts of the book, we develop deep learning algorithms within this
framework.
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Chapter 2

Linear Algebra

Linear algebra is a branch of mathematics that is widely used throughout science
and engineering. However, because linear algebra is a form of continuous rather
than discrete mathematics, many computer scientists have little experience with it.
A good understanding of linear algebra is essential for understanding and working
with many machine learning algorithms, especially deep learning algorithms. We
therefore precede our introduction to deep learning with a focused presentation of
the key linear algebra prerequisites.

If you are already familiar with linear algebra, feel free to skip this chapter. If
you have previous experience with these concepts but need a detailed reference
sheet to review key formulas, we recommend The Matriz Cookbook (

, ). If you have no exposure at all to linear algebra, this chapter
will teach you enough to read this book, but we highly recommend that you also
consult another resource focused exclusively on teaching linear algebra, such as

( ). This chapter will completely omit many important linear algebra
topics that are not essential for understanding deep learning.

2.1 Scalars, Vectors, Matrices and Tensors

The study of linear algebra involves several types of mathematical objects:

e Scalars: A scalar is just a single number, in contrast to most of the other
objects studied in linear algebra, which are usually arrays of multiple numbers.
We write scalars in italics. We usually give scalars lower-case variable names.
When we introduce them, we specify what kind of number they are. For
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example, we might say “Let s € R be the slope of the line,” while defining a
real-valued scalar, or “Let n € N be the number of units,” while defining a
natural number scalar.

e Vectors: A vector is an array of numbers. The numbers are arranged in
order. We can identify each individual number by its index in that ordering.
Typically we give vectors lower case names written in bold typeface, such
as . The elements of the vector are identified by writing its name in italic
typeface, with a subscript. The first element of  is z1, the second element
is x2 and so on. We also need to say what kind of numbers are stored in
the vector. If each element is in R, and the vector has n elements, then the
vector lies in the set formed by taking the Cartesian product of R n times,
denoted as R™. When we need to explicitly identify the elements of a vector,
we write them as a column enclosed in square brackets:

| - (2.1)

We can think of vectors as identifying points in space, with each element
giving the coordinate along a different axis.

Sometimes we need to index a set of elements of a vector. In this case, we
define a set containing the indices and write the set as a subscript. For
example, to access x1, x3 and g, we define the set S = {1, 3,6} and write
xs. We use the — sign to index the complement of a set. For example x_; is
the vector containing all elements of @ except for x1, and x_g is the vector
containing all of the elements of x except for x1, x3 and xs.

e Matrices: A matrix is a 2-D array of numbers, so each element is identified by
two indices instead of just one. We usually give matrices upper-case variable
names with bold typeface, such as A. If a real-valued matrix A has a height
of m and a width of n, then we say that A € R™*"™. We usually identify
the elements of a matrix using its name in italic but not bold font, and the
indices are listed with separating commas. For example, A; 1 is the upper
left entry of A and A,,, is the bottom right entry. We can identify all of
the numbers with vertical coordinate 7 by writing a “:” for the horizontal
coordinate. For example, A;. denotes the horizontal cross section of A with
vertical coordinate ¢. This is known as the i-th row of A. Likewise, A.; is
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Ay Az Az
A1p Aoa Aszp

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

the i-th column of A. When we need to explicitly identify the elements of a
matrix, we write them as an array enclosed in square brackets:

Ain Aip
’ ’ . 2.2
l A1 Agp } (2:2)

Sometimes we may need to index matrix-valued expressions that are not just
a single letter. In this case, we use subscripts after the expression, but do
not convert anything to lower case. For example, f(A); ; gives element (7, j)
of the matrix computed by applying the function f to A.

e Tensors: In some cases we will need an array with more than two axes. In
the general case, an array of numbers arranged on a regular grid with a
variable number of axes is known as a tensor. We denote a tensor named “A”
with this typeface: A. We identify the element of A at coordinates (i, j, k)
by writing A; j k.

One important operation on matrices is the transpose. The transpose of a
matrix is the mirror image of the matrix across a diagonal line, called the main
diagonal, running down and to the right, starting from its upper left corner. See
Fig. 2.1 for a graphical depiction of this operation. We denote the transpose of a
matrix A as AT, and it is defined such that

(AN = A (2.3)

Vectors can be thought of as matrices that contain only one column. The
transpose of a vector is therefore a matrix with only one row. Sometimes we
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define a vector by writing out its elements in the text inline as a row matrix,
then using the transpose operator to turn it into a standard column vector, e.g.,
_ T
T = [xla T2, $3]
A scalar can be thought of as a matrix with only a single entry. From this, we

can see that a scalar is its own transpose: a = al.

We can add matrices to each other, as long as they have the same shape, just
by adding their corresponding elements: C' = A + B where C; ; = A; ; + B; ;.

We can also add a scalar to a matrix or multiply a matrix by a scalar, just
by performing that operation on each element of a matrix: D = a - B + ¢ where
Di’j =a-B;; +c

In the context of deep learning, we also use some less conventional notation.
We allow the addition of matrix and a vector, yielding another matrix: C = A + b,
where C; ; = A; ; +b;. In other words, the vector b is added to each row of the
matrix. This shorthand eliminates the need to define a matrix with b copied into
each row before doing the addition. This implicit copying of b to many locations
is called broadcasting.

2.2 Multiplying Matrices and Vectors

One of the most important operations involving matrices is multiplication of two
matrices. The matriz product of matrices A and B is a third matrix C'. In order
for this product to be defined, A must have the same number of columns as B has
rows. If A is of shape m x n and B is of shape n x p, then C'is of shape m x p.
We can write the matrix product just by placing two or more matrices together,
e.g.

C = AB. (2.4)

The product operation is defined by

Cij =Y AixBrj. (2.5)
k

Note that the standard product of two matrices is not just a matrix containing
the product of the individual elements. Such an operation exists and is called the
element-wise product or Hadamard product, and is denoted as A ® B.

The dot product between two vectors & and y of the same dimensionality is the
matrix product « "'y. We can think of the matrix product C = AB as computing
C;,; as the dot product between row ¢ of A and column j of B.
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Matrix product operations have many useful properties that make mathematical
analysis of matrices more convenient. For example, matrix multiplication is
distributive:

A(B+C)=AB + AC. (2.6)

It is also associative:
A(BC)=(AB)C. (2.7)

Matrix multiplication is not commutative (the condition AB = BA does not
always hold), unlike scalar multiplication. However, the dot product between two
vectors is commutative:

r'y=y' (2.8)

The transpose of a matrix product has a simple form:
(AB)' =B'AT. (2.9)

This allows us to demonstrate Eq. 2.8, by exploiting the fact that the value of
such a product is a scalar and therefore equal to its own transpose:

-
xly = (zc Ty) =y (2.10)

Since the focus of this textbook is not linear algebra, we do not attempt to
develop a comprehensive list of useful properties of the matrix product here, but
the reader should be aware that many more exist.

We now know enough linear algebra notation to write down a system of linear
equations:

Az =b (2.11)

where A € R"™*" is a known matrix, b € R™ is a known vector, and £ € R" is a
vector of unknown variables we would like to solve for. Each element x; of ais one
of these unknown variables. Each row of A and each element of b provide another
constraint. We can rewrite Eq. 2.11 as:

Az =b (2.12)
AQ,: T =b (213)
(2.14)
or, even more explicitly, as:
A1gm + Ajomo + -+ Ay pz, = by (2.16)
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Figure 2.2: Exzample identity matriz: This is K.

Ag1m + Agomo + -+ + Aoy = b (2.17)
(2.18)
Am,lxl + Am,2x2 + -+ Am,nJ:n =by,. (219)

Matrix-vector product notation provides a more compact representation for
equations of this form.

2.3 Identity and Inverse Matrices

Linear algebra offers a powerful tool called matrixz inversion that allows us to
analytically solve Eq. 2.11 for many values of A.

To describe matrix inversion, we first need to define the concept of an identity
matriz. An identity matrix is a matrix that does not change any vector when we
multiply that vector by that matrix. We denote the identity matrix that preserves
n-dimensional vectors as I,,. Formally, I,, € R"*" and

Ve € R", I,x = x. (2.20)

The structure of the identity matrix is simple: all of the entries along the main
diagonal are 1, while all of the other entries are zero. See Fig. 2.2 for an example.

The matriz inverse of A is denoted as A~!, and it is defined as the matrix
such that
A tA=1,. (2.21)

We can now solve Eq. 2.11 by the following steps:

Az =1b (2.22)
A'Ax=A" (2.23)
Ix=A"'b (2.24)
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x=A"1b. (2.25)

Of course, this depends on it being possible to find A~'. We discuss the
conditions for the existence of A~! in the following section.

When A~ exists, several different algorithms exist for finding it in closed form.
In theory, the same inverse matrix can then be used to solve the equation many
times for different values of b. However, A ~! is primarily useful as a theoretical
tool, and should not actually be used in practice for most software applications.
Because A~! can be represented with only limited precision on a digital computer,
algorithms that make use of the value of b can usually obtain more accurate
estimates of x.

2.4 Linear Dependence and Span

In order for A~! to exist, Eq. 2.11 must have exactly one solution for every value
of b. However, it is also possible for the system of equations to have no solutions
or infinitely many solutions for some values of b. It is not possible to have more
than one but less than infinitely many solutions for a particular b; if both x and y
are solutions then

z=oax+ (1-a)y (2.26)

is also a solution for any real «.

To analyze how many solutions the equation has, we can think of the columns
of A as specifying different directions we can travel from the origin (the point
specified by the vector of all zeros), and determine how many ways there are of
reaching b. In this view, each element of x specifies how far we should travel in
each of these directions, with x; specifying how far to move in the direction of
column i:

Ax = Z I‘@'A;,i. (2.27)

In general, this kind of operation is called a linear combination. Formally, a linear
combination of some set of vectors {v(l) . v(”)} is given by multiplying each
vector v() by a corresponding scalar coefficient and adding the results:

> el (2.28)

The span of a set of vectors is the set of all points obtainable by linear combination
of the original vectors.
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Determining whether Ax = b has a solution thus amounts to testing whether
b is in the span of the columns of A. This particular span is known as the column
space or the range of A.

In order for the system Ax = bto have a solution for all values of b € R™,
we therefore require that the column space of A be all of R™. If any point inR ™
is excluded from the column space, that point is a potential value of b that has
no solution. The requirement that the column space of A be all of R implies
immediately that A must have at least m columns, i.e., n > m. Otherwise, the
dimensionality of the column space would be less than m. For example, consider a
3 x 2 matrix. The target bis 3-D, but « is only 2-D, so modifying the value of x
at best allows us to trace out a 2-D plane within R® The equation has a solution
if and only if b lies on that plane.

Having n > m is only a necessary condition for every point to have a solution.
It is not a sufficient condition, because it is possible for some of the columns to
be redundant. Consider a 2 x2 matrix where both of the columns are identical.
This has the same column space as a 2 x 1 matrix containing only one copy of the
replicated column. In other words, the column space is still just a line, and fails to
encompass all of R?, even though there are two columns.

Formally, this kind of redundancy is known as linear dependence. A set of
vectors is linearly independent if no vector in the set is a linear combination of the
other vectors. If we add a vector to a set that is a linear combination of the other
vectors in the set, the new vector does not add any points to the set’s span. This
means that for the column space of the matrix to encompass all of R™, the matrix
must contain at least one set of m linearly independent columns. This condition
is both necessary and sufficient for Eq. 2.11 to have a solution for every value of
b. Note that the requirement is for a set to have exactly m linear independent
columns, not at least m. No set of m-dimensional vectors can have more than m
mutually linearly independent columns, but a matrix with more than m columns
may have more than one such set.

In order for the matrix to have an inverse, we additionally need to ensure that
Eq. 2.11 has at most one solution for each value of b. To do so, we need to ensure
that the matrix has at most m columns. Otherwise there is more than one way of
parametrizing each solution.

Together, this means that the matrix must be square, that is, we require that
m = n and that all of the columns must be linearly independent. A square matrix
with linearly dependent columns is known as singular.

If A is not square or is square but singular, it can still be possible to solve the
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equation. However, we can not use the method of matrix inversion to find the
solution.

So far we have discussed matrix inverses as being multiplied on the left. It is
also possible to define an inverse that is multiplied on the right:

AA =T (2.29)

For square matrices, the left inverse and right inverse are equal.

2.5 Norms

Sometimes we need to measure the size of a vector. In machine learning, we usually
measure the size of vectors using a function called a norm. Formally, the LP norm
is given by

Jallp = (Zx> (2.30)

forpe R,p>1.

Norms, including the L? norm, are functions mapping vectors to non-negative
values. On an intuitive level, the norm of a vector x measures the distance from
the origin to the point . More rigorously, a norm is any function f that satisfies
the following properties:

e flx)=0=x=0
e flx+y) < f(x)+ f(y) (the triangle inequality)
o Va e R, f(ax) = |a|f(x)

The I? norm, with p = 2, is known as the Fuclidean norm. It is simply the
Euclidean distance from the origin to the point identified by . The L? norm is
used so frequently in machine learning that it is often denoted simply as ||z||, with
the subscript 2 omitted. It is also common to measure the size of a vector using
the squared L? norm, which can be calculated simply as = 'x.

The squared L? norm is more convenient to work with mathematically and
computationally than the L? norm itself. For example, the derivatives of the
squared L? norm with respect to each element of & each depend only on the
corresponding element of @, while all of the derivatives of the L? norm depend
on the entire vector. In many contexts, the squared L? norm may be undesirable
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because it increases very slowly near the origin. In several machine learning
applications, it is important to discriminate between elements that are exactly
zero and elements that are small but nonzero. In these cases, we turn to a function
that grows at the same rate in all locations, but retains mathematical simplicity:
the L' norm. The L' norm may be simplified to

]l = |ail. (2.31)

2

The L' norm is commonly used in machine learning when the difference between
zero and nonzero elements is very important. Every time an element of x moves
away from 0 by e, the L' norm increases by e.

We sometimes measure the size of the vector by counting its number of nonzero
elements. Some authors refer to this function as the “L° norm,” but this is incorrect
terminology. The number of non-zero entries in a vector is not a norm, because
scaling the vector by a does not change the number of nonzero entries. The L'
norm is often used as a substitute for the number of nonzero entries.

One other norm that commonly arises in machine learning is the L°° norm,
also known as the max norm. This norm simplifies to the absolute value of the
element with the largest magnitude in the vector,

||l = max |z;|. (2.32)
1

Sometimes we may also wish to measure the size of a matrix. In the context
of deep learning, the most common way to do this is with the otherwise obscure

Frobenius norm
1Al = [> A%, (2.33)
,J

which is analogous to the L? norm of a vector.

The dot product of two vectors can be rewritten in terms of norms. Specifically,
z'y = ||]|2l|yl| 2 cos 0 (2.34)

where 0 is the angle between & and y.

2.6 Special Kinds of Matrices and Vectors

Some special kinds of matrices and vectors are particularly useful.
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Diagonal matrices consist mostly of zeros and have non-zero entries only along
the main diagonal. Formally, a matrix D is diagonal if and only if D;; = 0 for
all 1 # 7. We have already seen one example of a diagonal matrix: the identity
matrix, where all of the diagonal entries are 1. We write diag(v) to denote a square
diagonal matrix whose diagonal entries are given by the entries of the vector v.
Diagonal matrices are of interest in part because multiplying by a diagonal matrix
is very computationally efficient. To compute diag(v)x, we only need to scale each
element z; by v;. In other words, diag( v)x = v ©® x. Inverting a square diagonal
matrix is also efficient. The inverse exists only if every diagonal entry is nonzero,
and in that case, diag(v)~! = diag([1/v1,...,1/v,]"). In many cases, we may
derive some very general machine learning algorithm in terms of arbitrary matrices,
but obtain a less expensive (and less descriptive) algorithm by restricting some
matrices to be diagonal.

Not all diagonal matrices need be square. It is possible to construct a rectangular
diagonal matrix. Non-square diagonal matrices do not have inverses but it is still
possible to multiply by them cheaply. For a non-square diagonal matrix D, the
product D will involve scaling each element of &, and either concatenating some
zeros to the result if D is taller than it is wide, or discarding some of the last
elements of the vector if D is wider than it is tall.

A symmetric matrix is any matrix that is equal to its own transpose:
A=A" (2.35)

Symmetric matrices often arise when the entries are generated by some function of
two arguments that does not depend on the order of the arguments. For example,
if A is a matrix of distance measurements, with A; ; giving the distance from point
i to point j, then A; ; = A;; because distance functions are symmetric.

A wunit vector is a vector with unit norm:

[z = 1. (2.36)

A vector x and a vector y are orthogonal to each other if & 'y = 0. If both
vectors have nonzero norm, this means that they are at a 90 degree angle to each
other. In R", at most n vectors may be mutually orthogonal with nonzero norm.
If the vectors are not only orthogonal but also have unit norm, we call them
orthonormal.

An orthogonal matriz is a square matrix whose rows are mutually orthonormal
and whose columns are mutually orthonormal:

A'A=AA"T =T (2.37)
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This implies that
Al=AT (2.38)

so orthogonal matrices are of interest because their inverse is very cheap to compute.
Pay careful attention to the definition of orthogonal matrices. Counterintuitively,
their rows are not merely orthogonal but fully orthonormal. There is no special
term for a matrix whose rows or columns are orthogonal but not orthonormal.

2.7 Eigendecomposition

Many mathematical objects can be understood better by breaking them into
constituent parts, or finding some properties of them that are universal, not caused
by the way we choose to represent them.

For example, integers can be decomposed into prime factors. The way we
represent the number 12 will change depending on whether we write it in base ten
or in binary, but it will always be true that 12 = 2x 2x 3. From this representation
we can conclude useful properties, such as that 12 is not divisible by 5, or that any
integer multiple of 12 will be divisible by 3.

Much as we can discover something about the true nature of an integer by
decomposing it into prime factors, we can also decompose matrices in ways that

show us information about their functional properties that is not obvious from the
representation of the matrix as an array of elements.

One of the most widely used kinds of matrix decomposition is called eigen-
decomposition, in which we decompose a matrix into a set of eigenvectors and
eigenvalues.

An eigenvector of a square matrix A is a non-zero vector v such that multipli-
cation by A alters only the scale of v:

Av = ). (2.39)

The scalar A is known as the eigenvalue corresponding to this eigenvector. (One
can also find a left eigenvector such thatv’ A= Av', but we are usually concerned
with right eigenvectors).

If v is an eigenvector of A, then so is any rescaled vector sv for s € R, s # 0.
Moreover, sv still has the same eigenvalue. For this reason, we usually only look
for unit eigenvectors.

Suppose that a matrix A has n linearly independent eigenvectors, {v(l) e
v(M}, with corresponding eigenvalues {\1,..., A, }. We may concatenate all of the
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Effect of eigenvectors and eigenvalues

Before multiplication After multiplication
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Figure 2.3: An example of the effect of eigenvectors and eigenvalues. Here, we have
a matrix A with two orthonormal eigenvectors, v with eigenvalue \; and v® with
eigenvalue 2. (Left) We plot the set of all unit vectors u € R? as a unit circle. (Right)
We plot the set of all points Au. By observing the way that A distorts the unit circle, we
can see that it scales space in direction o) by ;.

eigenvectors to form a matrix V' with one eigenvector per column: V = [v(l) e
v(”)]. Likewise, we can concatenate the eigenvalues to form a vector A = [Aq,...,
M |T. The eigendecomposition of A is then given by

A = VdiagA\) VL. (2.40)

We have seen that constructing matrices with specific eigenvalues and eigenvec-
tors allows us to stretch space in desired directions. However, we often want to
decompose matrices into their eigenvalues and eigenvectors. Doing so can help us
to analyze certain properties of the matrix, much as decomposing an integer into
its prime factors can help us understand the behavior of that integer.

Not every matrix can be decomposed into eigenvalues and eigenvectors. In some
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cases, the decomposition exists, but may involve complex rather than real numbers.
Fortunately, in this book, we usually need to decompose only a specific class of
matrices that have a simple decomposition. Specifically, every real symmetric
matrix can be decomposed into an expression using only real-valued eigenvectors
and eigenvalues:

A=QAQ", (2.41)

where @ is an orthogonal matrix composed of eigenvectors of A, and A is a
diagonal matrix. The eigenvalue A; ; is associated with the eigenvector in column ¢
of Q, denoted as Q. ;. Because Q is an orthogonal matrix, we can think of A as
scaling space by ); in direction v, See Fig. 2.3 for an example.

While any real symmetric matrix A is guaranteed to have an eigendecomposi-
tion, the eigendecomposition may not be unique. If any two or more eigenvectors
share the same eigenvalue, then any set of orthogonal vectors lying in their span
are also eigenvectors with that eigenvalue, and we could equivalently choose a Q
using those eigenvectors instead. By convention, we usually sort the entries of A
in descending order. Under this convention, the eigendecomposition is unique only
if all of the eigenvalues are unique.

The eigendecomposition of a matrix tells us many useful facts about the
matrix. The matrix is singular if and only if any of the eigenvalues are zero.
The eigendecomposition of a real symmetric matrix can also be used to optimize
quadratic expressions of the form f(x) = x| Ax subject to [|x|l = 1. Whenever @
is equal to an eigenvector of A, f takes on the value of the corresponding eigenvalue.
The maximum value of f within the constraint region is the maximum eigenvalue
and its minimum value within the constraint region is the minimum eigenvalue.

A matrix whose eigenvalues are all positive is called positive definite. A matrix
whose eigenvalues are all positive or zero-valued is called positive semidefinite.
Likewise, if all eigenvalues are negative, the matrix is negative definite, and if
all eigenvalues are negative or zero-valued, it is negative semidefinite. Positive
semidefinite matrices are interesting because they guarantee that V&, T Az > 0.
Positive definite matrices additionally guarantee that z'Ax =0 = = = 0.

2.8 Singular Value Decomposition

In Sec. 2.7, we saw how to decompose a matrix into eigenvectors and eigenvalues.
The singular value decomposition (SVD) provides another way to factorize a matrix,
into singular vectors and singular values. The SVD allows us to discover some of
the same kind of information as the eigendecomposition. However, the SVD is
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more generally applicable. Every real matrix has a singular value decomposition,
but the same is not true of the eigenvalue decomposition. For example, if a matrix
is not square, the eigendecomposition is not defined, and we must use a singular
value decomposition instead.

Recall that the eigendecomposition involves analyzing a matrix A to discover

a matrix V of eigenvectors and a vector of eigenvalues X such that we can rewrite
A as

A = Vdiag M)V (2.42)

The singular value decomposition is similar, except this time we will write A
as a product of three matrices:

A=UDV'. (2.43)

Suppose that A is an m x n matrix. Then U is defined to be an m x m matrix,
D to be an m x n matrix, and V to be an n x n matrix.

Each of these matrices is defined to have a special structure. The matrices U
and V are both defined to be orthogonal matrices. The matrix D is defined to be
a diagonal matrix. Note that D is not necessarily square.

The elements along the diagonal of D are known as the singular values of the
matrix A. The columns of U are known as the left-singular vectors. The columns
of V' are known as as the right-singular vectors.

We can actually interpret the singular value decomposition of A in terms of
the eigendecomposition of functions of A. The left-singular vectors of A are the
eigenvectors of AAT. The right-singular vectors of A are the eigenvectors of AT A
The non-zero singular values of A are the square roots of the eigenvalues of AT A
The same is true for AAT.

Perhaps the most useful feature of the SVD is that we can use it to partially
generalize matrix inversion to non-square matrices, as we will see in the next
section.

2.9 The Moore-Penrose Pseudoinverse

Matrix inversion is not defined for matrices that are not square. Suppose we want
to make a left-inverse B of a matrix A, so that we can solve a linear equation

Ar =1y (2.44)
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by left-multiplying each side to obtain
x = Buy. (2.45)

Depending on the structure of the problem, it may not be possible to design a
unique mapping from A to B.

If A is taller than it is wide, then it is possible for this equation to have
no solution. If A is wider than it is tall, then there could be multiple possible
solutions.

The Moore-Penrose pseudoinverse allows us to make some headway in these
cases. The pseudoinverse of A is defined as a matrix

AT = 1%(ATA +al)71AT. (2.46)

Practical algorithms for computing the pseudoinverse are not based on this defini-
tion, but rather the formula

At=VvD'UT, (2.47)

where U, D and V are the singular value decomposition of A, and the pseudoinverse
D of a diagonal matrix D is obtained by taking the reciprocal of its non-zero
elements then taking the transpose of the resulting matrix.

When A has more columns than rows, then solving a linear equation using the
pseudoinverse provides one of the many possible solutions. Specifically, it provides
the solution * = A"y with minimal Euclidean norm ||z||2 among all possible
solutions.

When A has more rows than columns, it is possible for there to be no solution.
In this case, using the pseudoinverse gives us the & for which Ax is as close as
possible to y in terms of Euclidean norm ||Axz — ylb.

2.10 The Trace Operator
The trace operator gives the sum of all of the diagonal entries of a matrix:

Tr(A) =) A, (2.48)

The trace operator is useful for a variety of reasons. Some operations that are
difficult to specify without resorting to summation notation can be specified using
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matrix products and the trace operator. For example, the trace operator provides
an alternative way of writing the Frobenius norm of a matrix:

1Al =1/ Tr(AAT). (2.49)

Writing an expression in terms of the trace operator opens up opportunities to
manipulate the expression using many useful identities. For example, the trace
operator is invariant to the transpose operator:

Tr(A) = Tr(A ). (2.50)

The trace of a square matrix composed of many factors is also invariant to
moving the last factor into the first position, if the shapes of the corresponding
matrices allow the resulting product to be defined:

Tr(ABC) =Tr(CAB) = Tr(BCA) (2.51)
or more generally,
n n—1
(][ FY) = Te(F™ [ ] FO). (2.52)
i=1 i=1

This invariance to cyclic permutation holds even if the resulting product has a
different shape. For example, for A € R™*™ and B € R™™™, we have

Tr(AB) = Tr(BA) (2.53)

even though AB € R™*™ and BA € R"*",

Another useful fact to keep in mind is that a scalar is its own trace: a = Tr(a).

2.11 The Determinant

The determinant of a square matrix, denoted det(A), is a function mapping
matrices to real scalars. The determinant is equal to the product of all the
eigenvalues of the matrix. The absolute value of the determinant can be thought
of as a measure of how much multiplication by the matrix expands or contracts
space. If the determinant is 0, then space is contracted completely along at least
one dimension, causing it to lose all of its volume. If the determinant is 1, then
the transformation is volume-preserving.
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2.12 Example: Principal Components Analysis

One simple machine learning algorithm, principal components analysis or PCA can
be derived using only knowledge of basic linear algebra.

Suppose we have a collection of m points {:1:(1) e ,m(m)} in R"™. Suppose we
would like to apply lossy compression to these points. Lossy compression means
storing the points in a way that requires less memory but may lose some precision.
We would like to lose as little precision as possible.

One way we can encode these points is to represent a lower-dimensional version
of them. For each point (*) € R™ we will find a corresponding code vector ¢(*) € R.
If [ is smaller than n, it will take less memory to store the code points than the
original data. We will want to find some encoding function that produces the code
for an input, f(x) = ¢, and a decoding function that produces the reconstructed
input given its code,  ~ g(f(x)).

PCA is defined by our choice of the decoding function. Specifically, to make the
decoder very simple, we choose to use matrix multiplication to map the code back
into R”. Let g(¢) = D¢, where D € R**! is the matrix defining the decoding.

Computing the optimal code for this decoder could be a difficult problem. To
keep the encoding problem easy, PCA constrains the columns of D to be orthogonal
to each other. (Note that D is still not technically “an orthogonal matrix” unless
l=n)

With the problem as described so far, many solutions are possible, because we
can increase the scale of D. ; if we decrease ¢; proportionally for all points. To give
the problem a unique solution, we constrain all of the columns of D to have unit
norm.

In order to turn this basic idea into an algorithm we can implement, the first
thing we need to do is figure out how to generate the optimal code point c* for
each input point . One way to do this is to minimize the distance between the
input point @ and its reconstruction, g( ¢*). We can measure this distance using a
norm. In the principal components algorithm, we use the L? norm:

c* = argmin||z — g(c)||2. (2.54)

We can switch to the squared L? norm instead of the L? norm itself, because
both are minimized by the same value of ¢. This is because the L? norm is non-
negative and the squaring operation is monotonically increasing for non-negative
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arguments.

c* = argmin||z — g(c)|3. (2.55)
C

The function being minimized simplifies to

(z—g(c)' (- g(c)) (2.56)
(by the definition of the L? norm, Eq. 2.30)

T T

—z'z—a"g(c)—gl(c ) g(c) (2.57)

(by the distributive property)

T

— a2z g(c) +g(c) 'g(c) (2.58)

(because the scalar g(x) '@ is equal to the transpose of itself).

We can now change the function being minimized again, to omit the first term,
since this term does not depend on c:

¢ = argcmin —2x "g(c) +g(e) Tg(c). (2.59)

To make further progress, we must substitute in the definition of g(c):

¢* = argmin —2z' Dc +¢' D' Dc (2.60)

C

= argmin—2z' Dc+¢' Ije (2.61)
C
(by the orthogonality and unit norm constraints on D)
— argmin —2x ' Dc+c¢' ¢ (2.62)

C

We can solve this optimization problem using vector calculus (see Sec. 4.3 if
you do not know how to do this):

Ve(—2x ' Dc+c'e) =0 (2.63)
—2D"x +2c=0 (2.64)
c=D'z. (2.65)

This makes the algorithm efficient: we can optimally encode z just using a
matrix-vector operation. To encode a vector, we apply the encoder function

f(x)=D . (2.66)
49



CHAPTER 2. LINEAR ALGEBRA

Using a further matrix multiplication, we can also define the PCA reconstruction
operation:

r(x) =g (f(x)) = DD . (2.67)

Next, we need to choose the encoding matrix D. To do so, we revisit the
idea of minimizing the L? distance between inputs and reconstructions. However,
since we will use the same matrix D to decode all of the points, we can no longer
consider the points in isolation. Instead, we must minimize the Frobenius norm of
the matrix of errors computed over all dimensions and all points:

D" = arg 1 min Z < 7 () ) subject to D' D = I, (2.68)

To derive the algorithm for finding D*, we will start by considering the case
where [ = 1. In this case, D is just a single vector, d. Substituting Eq. 2.67 into
Eq. 2.68 and simplifying D into d, the problem reduces to

d" = argmlnz |2 — dd" 2|2 subject to ||d|], = 1. (2.69)

The above formulation is the most direct way of performing the substitution,
but is not the most stylistically pleasing way to write the equation. It places the
scalar value d "z on the right of the vector d. It is more conventional to write
scalar coefficients on the left of vector they operate on. We therefore usually write
such a formula as

d* = arg minz |2 — dTzd||3 subject to ||d||, = 1, (2.70)
d

or, exploiting the fact that a scalar is its own transpose, as

d* = argminz |2® — 29T dd||2 subject to ||d||2 = 1. (2.71)
d

The reader should aim to become familiar with such cosmetic rearrangements.

At this point, it can be helpful to rewrite the problem in terms of a single
design matrix of examples, rather than as a sum over separate example vectors.
This will allow us to use more compact notation. Let X € R™*" be the matrix
defined by stacking all of the vectors describing the points, such that X;. = @
We can now rewrite the problem as

d* = argmin||X — Xdd" |} subject to d'd = 1. (2.72)
d
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Disregarding the constraint for the moment, we can simplify the Frobenius norm
portion as follows:
argmin|| X — Xdd' ||% (2.73)
d

= argmin T <(X . deT) ! (X - deT)> (2.74)

(by Eq. 2.49)

—argminTr(X 'X — X "'Xdd' —dd"X"X +dd'X"Xdd")  (2.75)
d

—argminTr(X " X) - Tr(X ' Xdd") — Tr(dd" X" X) + Tr(dd" X" Xdd")
d

(2.76)
— argmin — Tr(X' Xdd') — Tr(dd' X" X)+Tr(dd' X" Xdd") (2.77)
d
(because terms not involving d do not affect the arg min)
— argmin —2Tr(X ' Xdd')+ Tr(dd" X" X dd") (2.78)
d
(because we can cycle the order of the matrices inside a trace, Eq. 2.52)
— argmin —2Tr(X "' Xdd') + Tr(X "X dd'dd") (2.79)
d

(using the same property again)

At this point, we re-introduce the constraint:

argmin —2Tr(X ' Xdd'")+ Tr(X "X dd'dd") subject tod'd=1  (2.80)
d

— argmin—2Tr(X ' Xdd') + Tr(X ' Xdd'") subject tod'd =1 (2.81)
d

(due to the constraint)

— argmin — Tr(X ' Xdd ") subject to d'd = 1 (2.82)
d

— argmax Tr(X "X dd ") subject to d'd = 1 (2.83)
d

— argmax Tr(d" X " X d) subject to d'd =1 (2.84)
d

o1



CHAPTER 2. LINEAR ALGEBRA

This optimization problem may be solved using eigendecomposition. Specifically,
the optimal d is given by the eigenvector of X ' X corresponding to the largest
eigenvalue.

In the general case, where [ > 1, the matrix D is given by the [ eigenvectors
corresponding to the largest eigenvalues. This may be shown using proof by
induction. We recommend writing this proof as an exercise.

Linear algebra is one of the fundamental mathematical disciplines that is
necessary to understand deep learning. Another key area of mathematics that is
ubiquitous in machine learning is probability theory, presented next.
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Chapter 3

Probability and Information
Theory

In this chapter, we describe probability theory and information theory.

Probability theory is a mathematical framework for representing uncertain
statements. It provides a means of quantifying uncertainty and axioms for deriving
new uncertain statements. In artificial intelligence applications, we use probability
theory in two major ways. First, the laws of probability tell us how Al systems
should reason, so we design our algorithms to compute or approximate various
expressions derived using probability theory. Second, we can use probability and
statistics to theoretically analyze the behavior of proposed Al systems.

Probability theory is a fundamental tool of many disciplines of science and
engineering. We provide this chapter to ensure that readers whose background is
primarily in software engineering with limited exposure to probability theory can
understand the material in this book.

While probability theory allows us to make uncertain statements and reason
in the presence of uncertainty, information allows us to quantify the amount of
uncertainty in a probability distribution.

If you are already familiar with probability theory and information theory,
you may wish to skip all of this chapter except for Sec. 3.14, which describes the
graphs we use to describe structured probabilistic models for machine learning. If
you have absolutely no prior experience with these subjects, this chapter should
be sufficient to successfully carry out deep learning research projects, but we do
suggest that you consult an additional resource, such as ( ).
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3.1 Why Probability?

Many branches of computer science deal mostly with entities that are entirely
deterministic and certain. A programmer can usually safely assume that a CPU will
execute each machine instruction flawlessly. Errors in hardware do occur, but are
rare enough that most software applications do not need to be designed to account
for them. Given that many computer scientists and software engineers work in a
relatively clean and certain environment, it can be surprising that machine learning
makes heavy use of probability theory.

This is because machine learning must always deal with uncertain quantities,
and sometimes may also need to deal with stochastic (non-deterministic) quantities.
Uncertainty and stochasticity can arise from many sources. Researchers have made
compelling arguments for quantifying uncertainty using probability since at least
the 1980s. Many of the arguments presented here are summarized from or inspired

by (1988).

Nearly all activities require some ability to reason in the presence of uncertainty.
In fact, beyond mathematical statements that are true by definition, it is difficult
to think of any proposition that is absolutely true or any event that is absolutely
guaranteed to occur.

There are three possible sources of uncertainty:

1. Inherent stochasticity in the system being modeled. For example, most
interpretations of quantum mechanics describe the dynamics of subatomic
particles as being probabilistic. We can also create theoretical scenarios that
we postulate to have random dynamics, such as a hypothetical card game
where we assume that the cards are truly shuffled into a random order.

2. Incomplete observability. Even deterministic systems can appear stochastic
when we cannot observe all of the variables that drive the behavior of the
system. For example, in the Monty Hall problem, a game show contestant is
asked to choose between three doors and wins a prize held behind the chosen
door. Two doors lead to a goat while a third leads to a car. The outcome
given the contestant’s choice is deterministic, but from the contestant’s point
of view, the outcome is uncertain.

3. Incomplete modeling. When we use a model that must discard some of
the information we have observed, the discarded information results in
uncertainty in the model’s predictions. For example, suppose we build a
robot that can exactly observe the location of every object around it. If the
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robot discretizes space when predicting the future location of these objects,
then the discretization makes the robot immediately become uncertain about
the precise position of objects: each object could be anywhere within the
discrete cell that it was observed to occupy.

In many cases, it is more practical to use a simple but uncertain rule rather
than a complex but certain one, even if the true rule is deterministic and our
modeling system has the fidelity to accommodate a complex rule. For example, the
simple rule “Most birds fly” is cheap to develop and is broadly useful, while a rule
of the form, “Birds fly, except for very young birds that have not yet learned to
fly, sick or injured birds that have lost the ability to fly, flightless species of birds
including the cassowary, ostrich and kiwi...” is expensive to develop, maintain and
communicate, and after all of this effort is still very brittle and prone to failure.

Given that we need a means of representing and reasoning about uncertainty,
it is not immediately obvious that probability theory can provide all of the tools
we want for artificial intelligence applications. Probability theory was originally
developed to analyze the frequencies of events. It is easy to see how probability
theory can be used to study events like drawing a certain hand of cards in a
game of poker. These kinds of events are often repeatable. When we say that
an outcome has a probability p of occurring, it means that if we repeated the
experiment (e.g., draw a hand of cards) infinitely many times, then proportion p
of the repetitions would result in that outcome. This kind of reasoning does not
seem immediately applicable to propositions that are not repeatable. If a doctor
analyzes a patient and says that the patient has a 40% chance of having the flu,
this means something very different—we can not make infinitely many replicas of
the patient, nor is there any reason to believe that different replicas of the patient
would present with the same symptoms yet have varying underlying conditions. In
the case of the doctor diagnosing the patient, we use probability to represent a
degree of belief, with 1 indicating absolute certainty that the patient has the flu
and 0 indicating absolute certainty that the patient does not have the flu. The
former kind of probability, related directly to the rates at which events occur, is
known as frequentist probability, while the latter, related to qualitative levels of
certainty, is known as Bayesian probability.

If we list several properties that we expect common sense reasoning about
uncertainty to have, then the only way to satisfy those properties is to treat
Bayesian probabilities as behaving exactly the same as frequentist probabilities.
For example, if we want to compute the probability that a player will win a poker
game given that she has a certain set of cards, we use exactly the same formulas
as when we compute the probability that a patient has a disease given that she
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has certain symptoms. For more details about why a small set of common sense
assumptions implies that the same axioms must control both kinds of probability,
see ( ).

Probability can be seen as the extension of logic to deal with uncertainty. Logic
provides a set of formal rules for determining what propositions are implied to
be true or false given the assumption that some other set of propositions is true
or false. Probability theory provides a set of formal rules for determining the
likelihood of a proposition being true given the likelihood of other propositions.

3.2 Random Variables

A random variable is a variable that can take on different values randomly. We
typically denote the random variable itself with a lower case letter in plain typeface,
and the values it can take on with lower case script letters. For example, x1 and x2
are both possible values that the random variable x can take on. For vector-valued
variables, we would write the random variable as x and one of its values as . On
its own, a random variable is just a description of the states that are possible; it
must be coupled with a probability distribution that specifies how likely each of
these states are.

Random variables may be discrete or continuous. A discrete random variable
is one that has a finite or countably infinite number of states. Note that these
states are not necessarily the integers; they can also just be named states that
are not considered to have any numerical value. A continuous random variable is
associated with a real value.

3.3 Probability Distributions

A probability distribution is a description of how likely a random variable or
set of random variables is to take on each of its possible states. The way we
describe probability distributions depends on whether the variables are discrete or
continuous.

3.3.1 Discrete Variables and Probability Mass Functions

A probability distribution over discrete variables may be described using a proba-
bility mass function (PMF). We typically denote probability mass functions with a
capital P. Often we associate each random variable with a different probability
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mass function and the reader must infer which probability mass function to use
based on the identity of the random variable, rather than the name of the function;
P(x) is usually not the same as P(y).

The probability mass function maps from a state of a random variable to
the probability of that random variable taking on that state. The probability
that x = z is denoted as P(z), with a probability of 1 indicating that x = z is
certain and a probability of 0 indicating that x = x is impossible. Sometimes
to disambiguate which PMF to use, we write the name of the random variable
explicitly: P(x = z). Sometimes we define a variable first, then use ~ notation to
specify which distribution it follows later: x ~ P(x).

Probability mass functions can act on many variables at the same time. Such
a probability distribution over many variables is known as a joint probability
distribution. P(x = x,y = y) denotes the probability that x = z and y = y
simultaneously. We may also write P(z,y) for brevity.

To be a probability mass function on a random variable x, a function P must
satisfy the following properties:

e The domain of P must be the set of all possible states of x.

e Vx € x,0 < P(x) < 1. An impossible event has probability 0 and no state can
be less probable than that. Likewise, an event that is guaranteed to happen
has probability 1, and no state can have a greater chance of occurring.

*> . ex P(x) = 1. We refer to this property as being normalized. Without this
property, we could obtain probabilities greater than one by computing the
probability of one of many events occurring.

For example, consider a single discrete random variable x with & different states.
We can place a uniform distribution on x—that is, make each of its states equally
likely—by setting its probability mass function to

P(x=a;) =~ (3.1)

for all 2. We can see that this fits the requirements for a probability mass function.
The value 715 is positive because k is a positive integer. We also see that

ZP(X:%):Zi:::L (3.2)

so the distribution is properly normalized.
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3.3.2 Continuous Variables and Probability Density Functions

When working with continuous random variables, we describe probability dis-
tributions using a probability density function (PDF') rather than a probability
mass function. To be a probability density function, a function p must satisfy the
following properties:

e The domain of p must be the set of all possible states of x.

e Vz € x,p(x) > 0. Note that we do not require p(z) < 1.
o [p(z)dx =1.

A probability density function p(z) does not give the probability of a specific
state directly, instead the probability of landing inside an infinitesimal region with
volume dx is given by p(z)dz.

We can integrate the density function to find the actual probability mass of a
set of points. Specifically, the probability that z lies in some set S is given by the
integral of p(z) over that set. In the univariate example, the probability that x
lies in the interval [a, b] is given by f (a,b) p(x)dx.

For an example of a probability density function corresponding to a specific
probability density over a continuous random variable, consider a uniform distribu-
tion on an interval of the real numbers. We can do this with a function u(z;a,b),
where a and b are the endpoints of the interval, with b > a. The “;” notation means
“parametrized by”; we consider x to be the argument of the functlon, while a and
b are parameters that define the function. To ensure that there is no probability
mass outside the interval, we say u(z;a,b) = 0 for all * & [a,b]. Within [a,},
u(x;a,b) = b -~ We can see that this is nonnegative everywhere. Additionally, it
integrates to 1. We often denote that x follows the uniform distribution on [a, 8]
by writing x ~ U(a,b).

3.4 Marginal Probability

Sometimes we know the probability distribution over a set of variables and we want
to know the probability distribution over just a subset of them. The probability
distribution over the subset is known as the marginal probability distribution.

For example, suppose we have discrete random variables x and y, and we know
P(x,y). We can find P(x) with the sum rule:

Vr € x, P(x = 1) ZP = ). (3.3)
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The name “marginal probability” comes from the process of computing marginal
probabilities on paper. When the values of P(x,y) are written in a grid with
different values of x in rows and different values of y in columns, it is natural to
sum across a row of the grid, then write P(z) in the margin of the paper just to
the right of the row.

For continuous variables, we need to use integration instead of summation:

p(x) = / pla.y)dy. (3.4)

3.5 Conditional Probability

In many cases, we are interested in the probability of some event, given that some
other event has happened. This is called a conditional probability. We denote
the conditional probability that y = y givenx =z as P(y =y | x = z). This
conditional probability can be computed with the formula

Py =y,x=ux)
P(x =)

Ply=y|x=ux)= (3.5)
The conditional probability is only defined when P(x= z) > 0. We cannot compute
the conditional probability conditioned on an event that never happens.

It is important not to confuse conditional probability with computing what
would happen if some action were undertaken. The conditional probability that
a person is from Germany given that they speak German is quite high, but if
a randomly selected person is taught to speak German, their country of origin
does not change. Computing the consequences of an action is called making an
intervention query. Intervention queries are the domain of causal modeling, which
we do not explore in this book.

3.6 The Chain Rule of Conditional Probabilities

Any joint probability distribution over many random variables may be decomposed
into conditional distributions over only one variable:

This observation is known as the chain rule or product rule of probability. It
follows immediately from the definition of conditional probability in Eq. 3.5. For
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example, applying the definition twice, we get

P(a,b,c) = P(a|b,c)P(b,c)
P(b,c) = P(b|c)P(c)
P(a,b,c) = P(a]|b,c)P(b|c)P(c).

3.7 Independence and Conditional Independence

Two random variables x and y are independent if their probability distribution can
be expressed as a product of two factors, one involving only x and one involving

only y:
Veexyey, px=x,y=y) =px=2x)ply =y). (3.7)

Two random variables x and y are conditionally independent given a random
variable z if the conditional probability distribution over x and y factorizes in this
way for every value of z:

Veexyey,z€z px=x,y=yl|lz=2)=px=z|z=2)p(y=y |z =2).
(3.8)

We can denote independence and conditional independence with compact
notation: x Ly means that x and y are independent, while x Ly | z means that x
and y are conditionally independent given z.

3.8 Expectation, Variance and Covariance

The ezpectation or expected value of some function f(z ) with respect to a probability
distribution P(x) is the average or mean value that f takes on when z is drawn
from P. For discrete variables this can be computed with a summation:

Exoplf(2)] =) P(2)f(x), (3.9)
while for continuous variables, it is computed with an integral:
Buplf (o) = [ p(o) s ()da (3.10)
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When the identity of the distribution is clear from the context, we may simply
write the name of the random variable that the expectation is over, as in E4[f (z)].
If it is clear which random variable the expectation is over, we may omit the
subscript entirely, as in E[f (x)]. By default, we can assume that E[-] averages over
the values of all the random variables inside the brackets. Likewise, when there is
no ambiguity, we may omit the square brackets.

Expectations are linear, for example,

Exlaf(z) + Bg(z)] = afix([f(x)] + BEx[9(z)]; (3.11)

when « and S are not dependent on .

The variance gives a measure of how much the values of a function of a random
variable x vary as we sample different values of = from its probability distribution:

Var(f(2)) = E | (f(z) - E[f(@)])’]. (3.12)

When the variance is low, the values of f(x) cluster near their expected value. The
square root of the variance is known as the standard deviation.

The covariance gives some sense of how much two values are linearly related to
each other, as well as the scale of these variables:

Cov(f(z),9(y)) = E[(f(z) —E[f(2)]) (g(y) —E[g(v)])]. (3.13)

High absolute values of the covariance mean that the values change very much
and are both far from their respective means at the same time. If the sign of the
covariance is positive, then both variables tend to take on relatively high values
simultaneously. If the sign of the covariance is negative, then one variable tends to
take on a relatively high value at the times that the other takes on a relatively low
value and vice versa. Other measures such as correlation normalize the contribution
of each variable in order to measure only how much the variables are related, rather
than also being affected by the scale of the separate variables.

The notions of covariance and dependence are related, but are in fact distinct
concepts. They are related because two variables that are independent have zero
covariance, and two variables that have non-zero covariance are dependent. How-
ever, independence is a distinct property from covariance. For two variables to have
zero covariance, there must be no linear dependence between them. Independence
is a stronger requirement than zero covariance, because independence also excludes
nonlinear relationships. It is possible for two variables to be dependent but have
zero covariance. For example, suppose we first sample a real number x from a
uniform distribution over the interval [—1, 1]. We next sample a random variable
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s. With probability —%, we choose the value of s to be 1. Otherwise, we choose
the value of s to be —1. We can then generate a random variable y by assigning
y = sx. Clearly, x and y are not independent, because x completely determines
the magnitude of y. However, Cov(z,y) = 0.

The covariance matriz of a random vector € R" is an n X n matrix, such that
Cov(x)i; = Cov(x,X;). (3.14)
The diagonal elements of the covariance give the variance:

Cov(x;,x;) = Var(x; ). (3.15)

3.9 Common Probability Distributions

Several simple probability distributions are useful in many contexts in machine
learning.

3.9.1 Bernoulli Distribution

The Bernoull: distribution is a distribution over a single binary random variable.
It is controlled by a single parameter ¢ € [0,1], which gives the probability of the
random variable being equal to 1. It has the following properties:

Px=1)=¢ (3.16)
Px=0)=1-9¢ (3.17)
Px=x)=¢"(1-¢)'™" (3.18)
Exlx] = ¢ (3.19)
Vary(x) = ¢(1 - ¢) (3.20)

3.9.2 Multinoulli Distribution

The multinoulli or categorical distribution is a distribution over a single discrete
variable with & different states, where k is finite.! The multinoulli distribution is

! “Multinoulli” is a term that was recently coined by Gustavo Lacerdo and popularized by

( ). The multinoulli distribution is a special case of the multinomial distribution. A

multinomial distribution is the distribution over vectors in {0,...,n}"* representing how many

times each of the k categories is visited when n samples are drawn from a multinoulli distribution.

Many texts use the term “multinomial” to refer to multinoulli distributions without clarifying
that they refer only to the n = 1 case.
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parametrized by a vector p € [0, 1]’“_1, where p; gives the probability of the i-th
state. The final, k-th state’s probability is given by 1— 17 p. Note that we must
constrainl " p < 1. Multinoulli distributions are often used to refer to distributions
over categories of objects, so we do not usually assume that state 1 has numerical
value 1, etc. For this reason, we do not usually need to compute the expectation
or variance of multinoulli-distributed random variables.

The Bernoulli and multinoulli distributions are sufficient to describe any distri-
bution over their domain. This is because they model discrete variables for which
it is feasible to simply enumerate all of the states. When dealing with continuous
variables, there are uncountably many states, so any distribution described by a
small number of parameters must impose strict limits on the distribution.

3.9.3 Gaussian Distribution

The most commonly used distribution over real numbers is the normal distribution,
also known as the Gaussian distribution:

N(z;p,0%) = L exp ( i(x — u)2> . (3.21)

2mo? 202
See Fig. 3.1 for a plot of the density function.

The two parameters p € R and o € (0,00) control the normal distribution.
The parameter p gives the coordinate of the central peak. This is also the mean of
the distribution: E[x| = pu. The standard deviation of the distribution is given by
o, and the variance by o2

When we evaluate the PDF, we need to square and invert ¢. When we need to
frequently evaluate the PDF with different parameter values, a more efficient way
of parametrizing the distribution is to use a parameter 5 € (0, 00) to control the
preciston or inverse variance of the distribution:

N(zyp, 87 = \/Zexp (—;5(:13 —~ M)2) : (3.22)

Normal distributions are a sensible choice for many applications. In the absence
of prior knowledge about what form a distribution over the real numbers should
take, the normal distribution is a good default choice for two major reasons.

First, many distributions we wish to model are truly close to being normal
distributions. The central limit theorem shows that the sum of many independent
random variables is approximately normally distributed. This means that in
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The normal distribution
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Figure 3.1: The normal distribution: The normal distribution A’ (z; 1, 0%) exhibits a classic
“bell curve” shape, with the x coordinate of its central peak given by u, and the width
of its peak controlled by o. In this example, we depict the standard normal distribution,
with =0 and o = 1.

practice, many complicated systems can be modeled successfully as normally
distributed noise, even if the system can be decomposed into parts with more
structured behavior.

Second, out of all possible probability distributions with the same variance,
the normal distribution encodes the maximum amount of uncertainty over the
real numbers. We can thus think of the normal distribution as being the one that
inserts the least amount of prior knowledge into a model. Fully developing and
justifying this idea requires more mathematical tools, and is postponed to Sec.
19.4.2.

The normal distribution generalizes to R”, in which case it is known as the
multivariate normal distribution. It may be parametrized with a positive definite
symmetric matrix 3:

N(z;p, %) = \/(27r)’”‘dlet(2) exXp <—;(w —p)' BNz - N)) . (3.23)

The parameter p still gives the mean of the distribution, though now it is
vector-valued. The parameter 3 gives the covariance matrix of the distribution.
As in the univariate case, when we wish to evaluate the PDF several times for
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many different values of the parameters, the covariance is not a computationally
efficient way to parametrize the distribution, since we need to invert 3 to evaluate
the PDF. We can instead use a precision matriz 3:

det(3)
(2m)"
We often fix the covariance matrix to be a diagonal matrix. An even simpler

version is the isotropic Gaussian distribution, whose covariance matrix is a scalar
times the identity matrix.

N(z;p, B71) =

oo (—yle-wTBe-m). G2

3.9.4 Exponential and Laplace Distributions

In the context of deep learning, we often want to have a probability distribution
with a sharp point at * = 0. To accomplish this, we can use the exponential
distribution:

p(z;\) = Aly>pexp (—Az) . (3.25)

The exponential distribution uses the indicator function 1,>¢ to assign probability
zero to all negative values of x.

A closely related probability distribution that allows us to place a sharp peak
of probability mass at an arbitrary point u is the Laplace distribution

1 _
Laplace(x; p,y) = o™ exp (— i ; ,u|> : (3.26)

3.9.5 The Dirac Distribution and Empirical Distribution

In some cases, we wish to specify that all of the mass in a probability distribution
clusters around a single point. This can be accomplished by defining a PDF using
the Dirac delta function, §(z):

p(x) = o(x — p). (3.27)

The Dirac delta function is defined such that it is zero-valued everywhere except
0, yet integrates to 1. The Dirac delta function is not an ordinary function that
associates each value x with a real-valued output, instead it is a different kind of
mathematical object called a generalized function that is defined in terms of its
properties when integrated. We can think of the Dirac delta function as being the
limit point of a series of functions that put less and less mass on all points other
than pu.
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By defining p(x) to be 0 shifted by —p we obtain an infinitely narrow and
infinitely high peak of probability mass where x = pu.

A common use of the Dirac delta distribution is as a component of an empirical

distribution,
m

1 .
(x)=—Y o(x—az 3.28
pla) = o 3 ba =) (3.29)
which puts probability mass Rl on each of the m points a:(l), .. ,:c(m) forming

a given data set or collection of samples. The Dirac delta distribution is only
necessary to define the empirical distribution over continuous variables. For discrete
variables, the situation is simpler: an empirical distribution can be conceptualized
as a multinoulli distribution, with a probability associated to each possible input
value that is simply equal to the empirical frequency of that value in the training
set.

We can view the empirical distribution formed from a dataset of training
examples as specifying the distribution that we sample from when we train a model
on this dataset. Another important perspective on the empirical distribution is
that it is the probability density that maximizes the likelihood of the training data
(see Sec. 5.5).

3.9.6 Mixtures of Distributions

It is also common to define probability distributions by combining other simpler
probability distributions. One common way of combining distributions is to
construct a mixture distribution. A mixture distribution is made up of several
component distributions. On each trial, the choice of which component distribution
generates the sample is determined by sampling a component identity from a
multinoulli distribution:

P(x) = ZP(C = i)P(x| c=1) (3.29)

where P(c) is the multinoulli distribution over component identities.

We have already seen one example of a mixture distribution: the empirical
distribution over real-valued variables is a mixture distribution with one Dirac
component for each training example.

The mixture model is one simple strategy for combining probability distributions
to create a richer distribution. In Chapter 16, we explore the art of building complex
probability distributions from simple ones in more detail.
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The mixture model allows us to briefly glimpse a concept that will be of
paramount importance later—the latent variable. A latent variable is a random
variable that we cannot observe directly. The component identity variable c of the
mixture model provides an example. Latent variables may be related to x through
the joint distribution, in this case, P(x,c) = P(x | ¢)P(c). The distribution P(c)
over the latent variable and the distribution P(x | c¢) relating the latent variables
to the visible variables determines the shape of the distribution P(x) even though
it is possible to describe P(x) without reference to the latent variable. Latent
variables are discussed further in Sec. 16.5.

A very powerful and common type of mixture model is the Gaussian mixture
model, in which the components p(x | ¢ = i) are Gaussians. Each component has
a separately parametrized mean (9 and covariance (). Some mixtures can have
more constraints. For example, the covariances could be shared across components
via the constraint () = 3Vi. As with a single Gaussian distribution, the mixture
of Gaussians might constrain the covariance matrix for each component to be
diagonal or isotropic.

In addition to the means and covariances, the parameters of a Gaussian mixture
specify the prior probability a; = P(c= i) given to each component i. The word
“prior” indicates that it expresses the model’s beliefs about ¢ before it has observed
x. By comparison, P(c | x) is a posterior probability, because it is computed after
observation of x. A Gaussian mixture model is a wuniversal approximator of
densities, in the sense that any smooth density can be approximated with any
specific, non-zero amount of error by a Gaussian mixture model with enough
components.

Fig. 3.2 shows samples from a Gaussian mixture model.

3.10 Useful Properties of Common Functions

Certain functions arise often while working with probability distributions, especially
the probability distributions used in deep learning models.

One of these functions is the logistic sigmoid:

1

e 1) (3.30)

o(x)

The logistic sigmoid is commonly used to produce the ¢ parameter of a Bernoulli
distribution because its range is (0,1), which lies within the valid range of values
for the ¢ parameter. See Fig. 3.3 for a graph of the sigmoid function. The sigmoid
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x2

1

Figure 3.2: Samples from a Gaussian mixture model. In this example, there are three
components. From left to right, the first component has an isotropic covariance matrix,
meaning it has the same amount of variance in each direction. The second has a diagonal
covariance matrix, meaning it can control the variance separately along each axis-aligned
direction. This example has more variance along thexs axis than along the x; axis. The
third component has a full-rank covariance matrix, allowing it to control the variance
separately along an arbitrary basis of directions.

function saturates when its argument is very positive or very negative, meaning
that the function becomes very flat and insensitive to small changes in its input.

Another commonly encountered function is the softplus function ( ,

):
((z) = log (1 + exp(z)) . (3.31)
The softplus function can be useful for producing the 8 or ¢ parameter of a normal
distribution because its range is (0,00). It also arises commonly when manipulating

expressions involving sigmoids. The name of the softplus function comes from the
fact that it is a smoothed or “softened” version of

" = max(0, ). (3.32)
See Fig. 3.4 for a graph of the softplus function.

The following properties are all useful enough that you may wish to memorize
them:

_ exp()
o(w) = exp(x) + exp(0) (3:33)
2 o(2) = o(2)(1 ~ o(z) (3.34)
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The logistic sigmoid function
I I I

1.0

0.8} -

o(z)
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Figure 3.3: The logistic sigmoid function.

The softplus function
I I I

Figure 3.4: The softplus function.
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1 - o(z) = o(—2) (3.35)
log () = —((—a) (3.36)

L) = ol (3.37)

vz e (0,1), o=t (z) = log( - - x) (3.38)
Vo > 0, (1(x) = log (exp(z) — 1) (3.39)
)= [ oty (3.40)

((2) —C(-2) == (3.41)

The function o~!(z) is called the logit in statistics, but this term is more rarely
used in machine learning.

Eq. 3.41 provides extra justification for the name “softplus.” The softplus
function is intended as a smoothed version of the positive part function, x+ =
max{0,z}. The positive part function is the counterpart of the negative part
function, = = max{0, —z}. To obtain a smooth function that is analogous to the
negative part, one can use ((—z). Just as x can be recovered from its positive part
and negative part via the identity z+ — 2= = =z, it is also possible to recover x
using the same relationship between ((x) and ((—z), as shown in Eq. 3.41.

3.11 Bayes’ Rule

We often find ourselves in a situation where we know P(y | X) and need to know

P(x | y). Fortunately, if we also know P(x), we can compute the desired quantity

using Bayes’ rule:

P(x)P(y | x)
P(y)

Note that while P (y) appears in the formula, it is usually feasible to compute
P(y)=>_, P(y | )P(z), so we do not need to begin with knowledge of P(y).

Bayes’ rule is straightforward to derive from the definition of conditional
probability, but it is useful to know the name of this formula since many texts
refer to it by name. It is named after the Reverend Thomas Bayes, who first
discovered a special case of the formula. The general version presented here was
independently discovered by Pierre-Simon Laplace.

Px|y)=

(3.42)
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3.12 Technical Details of Continuous Variables

A proper formal understanding of continuous random variables and probability
density functions requires developing probability theory in terms of a branch of
mathematics known as measure theory. Measure theory is beyond the scope of
this textbook, but we can briefly sketch some of the issues that measure theory is
employed to resolve.

In Sec. 3.3.2, we saw that the probability of a continuous vector-valued x lying
in some set S is given by the integral of p (x) over the set S. Some choices of set S
can produce paradoxes. For example, it is possible to construct two sets S; and
Sy such that p(x € S;) + p(x € Sg) > 1 but S; NSy = 0. These sets are generally
constructed making very heavy use of the infinite precision of real numbers, for
example by making fractal-shaped sets or sets that are defined by transforming
the set of rational numbers.> One of the key contributions of measure theory is to
provide a characterization of the set of sets that we can compute the probability
of without encountering paradoxes. In this book, we only integrate over sets with
relatively simple descriptions, so this aspect of measure theory never becomes a
relevant concern.

For our purposes, measure theory is more useful for describing theorems that
apply to most points in R"™ but do not apply to some corner cases. Measure theory
provides a rigorous way of describing that a set of points is negligibly small. Such
a set is said to have “measure zero.” We do not formally define this concept in this
textbook. However, it is useful to understand the intuition that a set of measure
zero occupies no volume in the space we are measuring. For example, within R2, a
line has measure zero, while a filled polygon has positive measure. Likewise, an
individual point has measure zero. Any union of countably many sets that each
have measure zero also has measure zero (so the set of all the rational numbers
has measure zero, for instance).

Another useful term from measure theory is “almost everywhere.” A property
that holds almost everywhere holds throughout all of space except for on a set of
measure zero. Because the exceptions occupy a negligible amount of space, they
can be safely ignored for many applications. Some important results in probability
theory hold for all discrete values but only hold “almost everywhere” for continuous
values.

Another technical detail of continuous variables relates to handling continuous
random variables that are deterministic functions of one another. Suppose we have
two random variables, x and y, such that y = g(x), where ¢ is an invertible, con-

2The Banach-Tarski theorem provides a fun example of such sets.
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tinuous, differentiable transformation. One might expect that p,(y) = p. (g~ (y)).
This is actually not the case.

As a simple example, suppose we have scalar random variables x and y. Suppose

y = 3 and x ~ U(0,1). If we use the rule py(y) = p«(2y) then p, will be 0
everywhere except the interval [0, 3], and it will be 1 on this interval. This means

/ py(y)dy = % (3.43)

which violates the definition of a probability distribution.

This common mistake is wrong because it fails to account for the distortion
of space introduced by the function g. Recall that the probability of « lying in
an infinitesimally small region with volume dx is given by p(x)dx. Since g can
expand or contract space, the infinitesimal volume surrounding @ in @ space may
have different volume in y space.

To see how to correct the problem, we return to the scalar case. We need to
preserve the property

py(9(x))dy| = |pz(z)d]. (3.44)

Solving from this, we obtain

_ Ox
py(y) = pe (g7 (W) |5 (3.45)
Y
or equivalently
dg(x)
pa(@) = pyl(9(z)) | =5 |- (3.46)
In higher dimensions, the derivative generalizes to the determinant of the Jacobian
matriz—the matrix with J; ; = % Thus, for real-valued vectors @ and y,
dg(x
pa(e) = pilata))aet (%52 ) . (3.47)

3.13 Information Theory

Information theory is a branch of applied mathematics that revolves around
quantifying how much information is present in a signal. It was originally invented
to study sending messages from discrete alphabets over a noisy channel, such as
communication via radio transmission. In this context, information theory tells how
to design optimal codes and calculate the expected length of messages sampled from
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specific probability distributions using various encoding schemes. In the context of
machine learning, we can also apply information theory to continuous variables
where some of these message length interpretations do not apply. This field is
fundamental to many areas of electrical engineering and computer science. In this
textbook, we mostly use a few key ideas from information theory to characterize
probability distributions or quantify similarity between probability distributions.
For more detail on information theory, see ( ) or

(2003).

The basic intuition behind information theory is that learning that an unlikely
event has occurred is more informative than learning that a likely event has
occurred. A message saying “the sun rose this morning” is so uninformative as
to be unnecessary to send, but a message saying “there was a solar eclipse this
morning” is very informative.

We would like to quantify information in a way that formalizes this intuition.
Specifically,

e Likely events should have low information content, and in the extreme case,
events that are guaranteed to happen should have no information content
whatsoever.

e Less likely events should have higher information content.

e Independent events should have additive information. For example, finding
out that a tossed coin has come up as heads twice should convey twice as
much information as finding out that a tossed coin has come up as heads
once.

In order to satisfy all three of these properties, we define the self-information
of an event x = = to be

I(x) = —log P(z). (3.48)

In this book, we always use log to mean the natural logarithm, with base e. Our
definition of I(z) is therefore written in units of nats. One nat is the amount of
information gained by observing an event of probability % Other texts use base-2
logarithms and units called bits or shannons; information measured in bits is just
a rescaling of information measured in nats.

When x is continuous, we use the same definition of information by analogy,
but some of the properties from the discrete case are lost. For example, an event
with unit density still has zero information, despite not being an event that is
guaranteed to occur.
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o7 Shannon entropy of a binary random variable
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Figure 3.5: This plot shows how distributions that are closer to deterministic have low
Shannon entropy while distributions that are close to uniform have high Shannon entropy.
On the horizontal axis, we plot p, the probability of a binary random variable being equal
to 1. The entropy is given by (p —1) log(1 — p) — plog p. When p is near 0, the distribution
is nearly deterministic, because the random variable is nearly always 0. Whenp is near 1,
the distribution is nearly deterministic, because the random variable is nearly always 1.
When p = 0.5, the entropy is maximal, because the distribution is uniform over the two
outcomes.

Self-information deals only with a single outcome. We can quantify the amount
of uncertainty in an entire probability distribution using the Shannon entropy:

H(x) = Exp[I(z)] = —Expllog P(z)]. (3.49)

also denoted H(P). In other words, the Shannon entropy of a distribution is the
expected amount of information in an event drawn from that distribution. It gives
a lower bound on the number of bits (if the logarithm is base 2, otherwise the units
are different) needed on average to encode symbols drawn from a distribution P.
Distributions that are nearly deterministic (where the outcome is nearly certain)
have low entropy; distributions that are closer to uniform have high entropy. See
Fig. 3.5 for a demonstration. When x is continuous, the Shannon entropy is known
as the differential entropy.

If we have two separate probability distributions P(x) and Q(x) over the same

random variable x, we can measure how different these two distributions are using
the Kullback-Leibler (KL) divergence:

Dkt (PI|Q) = Fxwp [bg ggﬂ — Eyopllog P(z) —log Q@) . (3.50)
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In the case of discrete variables, it is the extra amount of information (measured
in bits if we use the base 2 logarithm, but in machine learning we usually use nats
and the natural logarithm) needed to send a message containing symbols drawn
from probability distribution P, when we use a code that was designed to minimize
the length of messages drawn from probability distribution Q).

The KL divergence has many useful properties, most notably that it is non-
negative. The KL divergence is 0 if and only if P and () are the same distribution in
the case of discrete variables, or equal “almost everywhere” in the case of continuous
variables. Because the KL divergence is non-negative and measures the difference
between two distributions, it is often conceptualized as measuring some sort of
distance between these distributions. However, it is not a true distance measure
because it is not symmetric: Dkr(P||Q) # DkL(Q||P) for some P and ). This
asymmetry means that there are important consequences to the choice of whether
to use Dk1(P||@Q) or Dx1(Q||P). See Fig. 3.6 for more detail.

A quantity that is closely related to the KL divergence is the cross-entropy
H(P,Q) = H(P) + DkL(P||@), which is similar to the KL divergence but lacking
the term on the left:

H(P,Q) = —ExplogQ(z). (3.51)

Minimizing the cross-entropy with respect to () is equivalent to minimizing the
KL divergence, because () does not participate in the omitted term.

When computing many of these quantities, it is common to encounter expres-
sions of the form 0log0. By convention, in the context of information theory, we
treat these expressions as lim, gz logx = 0.

3.14 Structured Probabilistic Models

Machine learning algorithms often involve probability distributions over a very
large number of random variables. Often, these probability distributions involve
direct interactions between relatively few variables. Using a single function to
describe the entire joint probability distribution can be very inefficient (both
computationally and statistically).

Instead of using a single function to represent a probability distribution, we
can split a probability distribution into many factors that we multiply together.
For example, suppose we have three random variables: a, b and c¢. Suppose that
a influences the value of b and b influences the value of ¢, but that a and c are
independent given b. We can represent the probability distribution over all three
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q¢* = argmin Dkr(p||q) q" = argmin Dk (ql|p)
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Figure 3.6: The KL divergence is asymmetric. Suppose we have a distribution p(x) and
wish to approximate it with another distribution g(z). We have the choice of minimizing
either Dk, (p|lq) or Dk1.(q||p). We illustrate the effect of this choice using a mixture of
two Gaussians for p, and a single Gaussian for q. The choice of which direction of the
KL divergence to use is problem-dependent. Some applications require an approximation
that usually places high probability anywhere that the true distribution places high
probability, while other applications require an approximation that rarely places high
probability anywhere that the true distribution places low probability. The choice of the
direction of the KL divergence reflects which of these considerations takes priority for each
application. (Left) The effect of minimizing Dkr,(pl/q). In this case, we select a ¢ that has
high probability where p has high probability. When p has multiple modes, ¢ chooses to
blur the modes together, in order to put high probability mass on all of them. (Right) The
effect of minimizing Dxkr,(g||p). In this case, we select a ¢ that has low probability where
p has low probability. When p has multiple modes that are sufficiently widely separated,
as in this figure, the KL divergence is minimized by choosing a single mode, in order to
avoid putting probability mass in the low-probability areas between modes ofp. Here, we
illustrate the outcome when ¢ is chosen to emphasize the left mode. We could also have
achieved an equal value of the KL divergence by choosing the right mode. If the modes
are not separated by a sufficiently strong low probability region, then this direction of the
KL divergence can still choose to blur the modes.
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variables as a product of probability distributions over two variables:
p(a,b,c) = p(a)p(b | a)p(c | b). (3.52)

These factorizations can greatly reduce the number of parameters needed
to describe the distribution. Each factor uses a number of parameters that is
exponential in the number of variables in the factor. This means that we can greatly
reduce the cost of representing a distribution if we are able to find a factorization
into distributions over fewer variables.

We can describe these kinds of factorizations using graphs. Here we use the
word “graph” in the sense of graph theory: a set of vertices that may be connected
to each other with edges. When we represent the factorization of a probability
distribution with a graph, we call it a structured probabilistic model or graphical
model.

There are two main kinds of structured probabilistic models: directed and
undirected. Both kinds of graphical models use a graph G in which each node
in the graph corresponds to a random variable, and an edge connecting two
random variables means that the probability distribution is able to represent direct
interactions between those two random variables.

Directed models use graphs with directed edges, and they represent factoriza-
tions into conditional probability distributions, as in the example above. Specifically,
a directed model contains one factor for every random variablex; in the distribution,
and that factor consists of the conditional distribution over x; given the parents of
X, denoted Pag(x;):

p(x) = [ p (x| Pag(x). (359

See Fig. 3.7 for an example of a directed graph and the factorization of probability
distributions it represents.

Undirected models use graphs with undirected edges, and they represent fac-
torizations into a set of functions; unlike in the directed case, these functions are
usually not probability distributions of any kind. Any set of nodes that are all
connected to each other in G is called a clique. Each clique C® in an undirected
model is associated with a factor ¢ (9 (C(")). These factors are just functions, not
probability distributions. The output of each factor must be non-negative, but
there is no constraint that the factor must sum or integrate to 1 like a probability
distribution.

The probability of a configuration of random variables is proportional to the
product of all of these factors—assignments that result in larger factor values are
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Figure 3.7: A directed graphical model over random variablesa, b, ¢, d and e. This graph
corresponds to probability distributions that can be factored as

p(a,b,c,d,e) = p(a)p(b | a)p(c | a,b)p(d | b)p(e | c). (3.54)

This graph allows us to quickly see some properties of the distribution. For example,a
and c interact directly, but a and e interact only indirectly via c.

more likely. Of course, there is no guarantee that this product will sum to 1. We
therefore divide by a normalizing constant Z, defined to be the sum or integral
over all states of the product of the ¢ functions, in order to obtain a normalized
probability distribution:

p(x) = ; IR (C(”) . (3.55)

7

See Fig. 3.8 for an example of an undirected graph and the factorization of
probability distributions it represents.

Keep in mind that these graphical representations of factorizations are a
language for describing probability distributions. They are not mutually exclusive
families of probability distributions. Being directed or undirected is not a property
of a probability distribution; it is a property of a particular description of a
probability distribution, but any probability distribution may be described in both
ways.

Throughout Part I and Part II of this book, we will use structured probabilistic
models merely as a language to describe which direct probabilistic relationships
different machine learning algorithms choose to represent. No further understanding
of structured probabilistic models is needed until the discussion of research topics,
in Part III, where we will explore structured probabilistic models in much greater
detail.
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Figure 3.8: An undirected graphical model over random variablesa, b, ¢, d and e. This
graph corresponds to probability distributions that can be factored as

plab,c,d,e) = 26 (a, b, )6 (b, )6 (c, ). (3.56)

This graph allows us to quickly see some properties of the distribution. For example,a
and c interact directly, but a and e interact only indirectly via c.

This chapter has reviewed the basic concepts of probability theory that are
most relevant to deep learning. One more set of fundamental mathematical tools
remains: numerical methods.
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Chapter 4

Numerical Computation

Machine learning algorithms usually require a high amount of numerical compu-
tation. This typically refers to algorithms that solve mathematical problems by
methods that update estimates of the solution via an iterative process, rather than
analytically deriving a formula providing a symbolic expression for the correct so-
lution. Common operations include optimization (finding the value of an argument
that minimizes or maximizes a function) and solving systems of linear equations.
Even just evaluating a mathematical function on a digital computer can be difficult
when the function involves real numbers, which cannot be represented precisely
using a finite amount of memory.

4.1 Overflow and Underflow

The fundamental difficulty in performing continuous math on a digital computer
is that we need to represent infinitely many real numbers with a finite number
of bit patterns. This means that for almost all real numbers, we incur some
approximation error when we represent the number in the computer. In many
cases, this is just rounding error. Rounding error is problematic, especially when
it compounds across many operations, and can cause algorithms that work in
theory to fail in practice if they are not designed to minimize the accumulation of
rounding error.

One form of rounding error that is particularly devastating is underflow. Under-
flow occurs when numbers near zero are rounded to zero. Many functions behave
qualitatively differently when their argument is zero rather than a small positive
number. For example, we usually want to avoid division by zero (some software
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environments will raise exceptions when this occurs, others will return a result
with a placeholder not-a-number value) or taking the logarithm of zero (this is
usually treated as —oo, which then becomes not-a-number if it is used for many
further arithmetic operations).

Another highly damaging form of numerical error is overflow. Overflow occurs
when numbers with large magnitude are approximated as oo or —oo. Further
arithmetic will usually change these infinite values into not-a-number values.

One example of a function that must be stabilized against underflow and
overflow is the softmax function. The softmax function is often used to predict the
probabilities associated with a multinoulli distribution. The softmax function is
defined to be

neXp(”") (4.1)

softmax(x); = .
()i = exp(x;)

Consider what happens when all of the x; are equal to some constant c. Analytically,
we can see that all of the outputs should be equal to % Numerically, this may
not occur when c¢ has large magnitude. If ¢ is very negative, then exp(c) will
underflow. This means the denominator of the softmax will become 0, so the final
result is undefined. When c is very large and positive, exp(c) will overflow, again
resulting in the expression as a whole being undefined. Both of these difficulties
can be resolved by instead evaluating softmax(z) where z =& — max; x;. Simple
algebra shows that the value of the softmax function is not changed analytically by
adding or subtracting a scalar from the input vector. Subtracting max; z; results
in the largest argument to exp being 0, which rules out the possibility of overflow.
Likewise, at least one term in the denominator has a value of 1, which rules out
the possibility of underflow in the denominator leading to a division by zero.

There is still one small problem. Underflow in the numerator can still cause
the expression as a whole to evaluate to zero. This means that if we implement
log softmax () by first running the softmax subroutine then passing the result to
the log function, we could erroneously obtain —oo. Instead, we must implement
a separate function that calculates logsoftmax in a numerically stable way. The
log softmax function can be stabilized using the same trick as we used to stabilize
the softmax function.

For the most part, we do not explicitly detail all of the numerical considerations
involved in implementing the various algorithms described in this book. Developers
of low-level libraries should keep numerical issues in mind when implementing
deep learning algorithms. Most readers of this book can simply rely on low-
level libraries that provide stable implementations. In some cases, it is possible
to implement a new algorithm and have the new implementation automatically
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stabilized. Theano ( , ; : ) is an example
of a software package that automatically detects and stabilizes many common
numerically unstable expressions that arise in the context of deep learning.

4.2 Poor Conditioning

Conditioning refers to how rapidly a function changes with respect to small changes
in its inputs. Functions that change rapidly when their inputs are perturbed slightly
can be problematic for scientific computation because rounding errors in the inputs
can result in large changes in the output.

Consider the function f(z) = A 'z. When A € R™ " has an eigenvalue
decomposition, its condition number is

i

Wk (4.2)

max
Y]

This is the ratio of the magnitude of the largest and smallest eigenvalue. When
this number is large, matrix inversion is particularly sensitive to error in the input.

This sensitivity is an intrinsic property of the matrix itself, not the result
of rounding error during matrix inversion. Poorly conditioned matrices amplify
pre-existing errors when we multiply by the true matrix inverse. In practice, the
error will be compounded further by numerical errors in the inversion process itself.

4.3 Gradient-Based Optimization

Most deep learning algorithms involve optimization of some sort. Optimization
refers to the task of either minimizing or maximizing some function f(x) by altering
. We usually phrase most optimization problems in terms of minimizing f(x).
Maximization may be accomplished via a minimization algorithm by minimizing
—f(x).

The function we want to minimize or maximize is called the objective function
or criterton. When we are minimizing it, we may also call it the cost function,
loss function, or error function. In this book, we use these terms interchangeably,
though some machine learning publications assign special meaning to some of these
terms.

We often denote the value that minimizes or maximizes a function with a
superscript *. For example, we might say «* = arg min f(x).
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Gradient descent
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Figure 4.1: An illustration of how the derivatives of a function can be used to follow the
function downhill to a minimum. This technique is called gradient descent.

We assume the reader is already familiar with calculus, but provide a brief
review of how calculus concepts relate to optimization here.

Suppose we have a function y = f(z), where both x and y are real numbers.
The derivative of this function is denoted as f'(x) or as % . The derivative f'(z)
gives the slope of f(x) at the point z. In other words, it specifies how to scale
a small change in the input in order to obtain the corresponding change in the
output: f(z +¢€) ~ f(x)+ef'(x).

The derivative is therefore useful for minimizing a function because it tells us
how to change z in order to make a small improvement in y. For example, we
know that f(z — esign(f'(x))) is less than f(z) for small enough e. We can thus
reduce f(x) by moving x in small steps with opposite sign of the derivative. This
technique is called gradient descent ( , ). See Fig. 4.1 for an example of
this technique.

When f’(x) = 0, the derivative provides no information about which direction
to move. Points where f'(x) = 0 are known as critical points or stationary points.
A local minimum is a point where f(x) is lower than at all neighboring points,
so it is no longer possible to decrease f (r) by making infinitesimal steps. A local
mazximum is a point where f(z) is higher than at all neighboring points, so it is
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Types of critical points

Minimum Maximum Saddle point

\//.\

Figure 4.2: Examples of each of the three types of critical points in 1-D. A critical point is
a point with zero slope. Such a point can either be a local minimum, which is lower than
the neighboring points, a local maximum, which is higher than the neighboring points, or
a saddle point, which has neighbors that are both higher and lower than the point itself.

not possible to increase f(x) by making infinitesimal steps. Some critical points
are neither maxima nor minima. These are known as saddle points. See Fig. 4.2
for examples of each type of critical point.

A point that obtains the absolute lowest value of f(x) is a global minimum. It
is possible for there to be only one global minimum or multiple global minima of
the function. It is also possible for there to be local minima that are not globally
optimal. In the context of deep learning, we optimize functions that may have
many local minima that are not optimal, and many saddle points surrounded by
very flat regions. All of this makes optimization very difficult, especially when the
input to the function is multidimensional. We therefore usually settle for finding a
value of f that is very low, but not necessarily minimal in any formal sense. See
Fig. 4.3 for an example.

We often minimize functions that have multiple inputs: f : R™ — R. For the
concept of “minimization” to make sense, there must still be only one (scalar)
output.

For functions with multiple inputs, we must make use of the concept of partial
derivatives. The partial derivative % f(x) measures how f changes as only the
variable x; increases at point . The gradient generalizes the notion of derivative
to the case where the derivative is with respect to a vector: the gradient of f is the
vector containing all of the partial derivatives, denoted V, f(x). Element ¢ of the
gradient is the partial derivative of f with respect to x;. In multiple dimensions,
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Approximate minimization

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

B | Ideally, we would like
to arrive at the global
minimum, but this

might not be possible. . .
This local minimum performs

poorly, and should be avoided.

Figure 4.3: Optimization algorithms may fail to find a global minimum when there are
multiple local minima or plateaus present. In the context of deep learning, we generally
accept such solutions even though they are not truly minimal, so long as they correspond
to significantly low values of the cost function.

critical points are points where every element of the gradient is equal to zero.

The directional derivative in direction w (a unit vector) is the slope of the
function f in direction u. In other words, the directional derivative is the derivative
of the function f(x + au) with respect to «, evaluated at = 0. Using the chain
rule, we can see that %f(:n +au) =u' Vaf(z).

To minimize f, we would like to find the direction in which f decreases the
fastest. We can do this using the directional derivative:

min  u'Vgf(x) (4.3)
u,u lu=1
= min ffulp||Ve f(z)]k cos (4.4)

where 6 is the angle between v and the gradient. Substituting in ||ul||2 = 1 and
ignoring factors that do not depend on w, this simplifies to min, cos 6. This is
minimized when w points in the opposite direction as the gradient. In other
words, the gradient points directly uphill, and the negative gradient points directly
downhill. We can decrease f by moving in the direction of the negative gradient.
This is known as the method of steepest descent or gradient descent.

Steepest descent proposes a new point
' =x — eV f(x) (4.5)
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where € is the learning rate, a positive scalar determining the size of the step. We
can choose € in several different ways. A popular approach is to set € to a small
constant. Sometimes, we can solve for the step size that makes the directional
derivative vanish. Another approach is to evaluate f (& — eV, f(x)) for several
values of € and choose the one that results in the smallest objective function value.
This last strategy is called a line search.

Steepest descent converges when every element of the gradient is zero (or, in
practice, very close to zero). In some cases, we may be able to avoid running this
iterative algorithm, and just jump directly to the critical point by solving the
equation Vgf(x) = 0 for x.

Although gradient descent is limited to optimization in continuous spaces, the
general concept of making small moves (that are approximately the best small move)
towards better configurations can be generalized to discrete spaces. Ascending an
objective function of discrete parameters is called hill climbing (

).

)

4.3.1 Beyond the Gradient: Jacobian and Hessian Matrices

Sometimes we need to find all of the partial derivatives of a function whose input
and output are both vectors. The matrix containing all such partial derivatives is
known as a Jacobian matriz. Specifically, if we have a function f: R™ — R", then
the Jacobian matrix J € R"*™ of f is defined such that .J; ; = % f(x);

We are also sometimes interested in a derivative of a derivative. This is known
as a second derivative. For example, for a function f : R* — R, the derivative
with respect to a; of the derivative of f with respect to z; is denoted as a%’@%mﬂ- f.

In a single dimension, we can denote %25 f by f"(z). The second derivative tells
us how the first derivative will change as we vary the input. This is important
because it tells us whether a gradient step will cause as much of an improvement
as we would expect based on the gradient alone. We can think of the second
derivative as measuring curvature. Suppose we have a quadratic function (many
functions that arise in practice are not quadratic but can be approximated well
as quadratic, at least locally). If such a function has a second derivative of zero,
then there is no curvature. It is a perfectly flat line, and its value can be predicted
using only the gradient. If the gradient is 1, then we can make a step of size €
along the negative gradient, and the cost function will decrease by e. If the second
derivative is negative, the function curves downward, so the cost function will
actually decrease by more than e. Finally, if the second derivative is positive, the
function curves upward, so the cost function can decrease by less than e. See Fig.
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Figure 4.4: The second derivative determines the curvature of a function. Here we show
quadratic functions with various curvature. The dashed line indicates the value of the cost
function we would expect based on the gradient information alone as we make a gradient
step downhill. In the case of negative curvature, the cost function actually decreases
faster than the gradient predicts. In the case of no curvature, the gradient predicts the
decrease correctly. In the case of positive curvature, the function decreases slower than
expected and eventually begins to increase, so too large of step sizes can actually increase
the function inadvertently.

4.4 to see how different forms of curvature affect the relationship between the value
of the cost function predicted by the gradient and the true value.

When our function has multiple input dimensions, there are many second
derivatives. These derivatives can be collected together into a matrix called the
Hessian matriz. The Hessian matrix H (f)(x) is defined such that

(92

H(f)(x)i; = m f(x).

(4.6)

Equivalently, the Hessian is the Jacobian of the gradient.

Anywhere that the second partial derivatives are continuous, the differential
operators are commutative, i.e. their order can be swapped:

02 P
b0, T®) = 5 0 I @) (4.7)

This implies that H; ; = H ;;, so the Hessian matrix is symmetric at such points.
Most of the functions we encounter in the context of deep learning have a symmetric
Hessian almost everywhere. Because the Hessian matrix is real and symmetric,
we can decompose it into a set of real eigenvalues and an orthogonal basis of
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eigenvectors. The second derivative in a specific direction represented by a unit
vector d is given by d "Hd. When d is an eigenvector of H, the second derivative
in that direction is given by the corresponding eigenvalue. For other directions of
d, the directional second derivative is a weighted average of all of the eigenvalues,
with weights between 0 and 1, and eigenvectors that have smaller angle with d
receiving more weight. The maximum eigenvalue determines the maximum second
derivative and the minimum eigenvalue determines the minimum second derivative.

The (directional) second derivative tells us how well we can expect a gradient
descent step to perform. We can make a second-order Taylor series approximation
to the function f(x) around the current point z(?);

}(w — 2N TH(x — ). (4.8)

f@) = f@) + (@ -2 g+

where g is the gradient and H is the Hessian at (). If we use a learning rate
of €, then the new point  will be given by x(?) — eg. Substituting this into our
approximation, we obtain

f@® —cg)~ f(2®) ~ eg g+ 59" Hy. (49)

There are three terms here: the original value of the function, the expected
improvement due to the slope of the function, and the correction we must apply
to account for the curvature of the function. When this last term is too large, the
gradient descent step can actually move uphill. When g" Hg is zero or negative,
the Taylor series approximation predicts that increasing € forever will decrease f
forever. In practice, the Taylor series is unlikely to remain accurate for large €, so
one must resort to more heuristic choices of € in this case. When g' Hg is positive,
solving for the optimal step size that decreases the Taylor series approximation of
the function the most yields
s_ 99

g'Hg
In the worst case, when g aligns with the eigenvector of H corresponding to the
maximal eigenvalue Apax, then this optimal step size is given by Klax . To the
extent that the function we minimize can be approximated well by a quadratic
function, the eigenvalues of the Hessian thus determine the scale of the learning
rate.

(4.10)

The second derivative can be used to determine whether a critical point is a
local maximum, a local minimum, or saddle point. Recall that on a critical point,
f(z) = 0. When f”(x) > 0, this means that f’(z) increases as we move to the
right, and f’(z) decreases as we move to the left. This means f'(z —€) <0 and
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f'(x+¢€)> 0 for small enough €. In other words, as we move right, the slope begins
to point uphill to the right, and as we move left, the slope begins to point uphill
to the left. Thus, when f’(z) = 0 and f”(x) >0, we can conclude that x is a local
minimum. Similarly, when f/(x) = 0 and f”(x) < 0, we can conclude that z is a
local maximum. This is known as the second derivative test. Unfortunately, when
f"(x) = 0, the test is inconclusive. In this case z may be a saddle point, or a part
of a flat region.

In multiple dimensions, we need to examine all of the second derivatives of the
function. Using the eigendecomposition of the Hessian matrix, we can generalize
the second derivative test to multiple dimensions. At a critical point, where
Ve f(x) =0, we can examine the eigenvalues of the Hessian to determine whether
the critical point is a local maximum, local minimum, or saddle point. When the
Hessian is positive definite (all its eigenvalues are positive), the point is a local
minimum. This can be seen by observing that the directional second derivative
in any direction must be positive, and making reference to the univariate second
derivative test. Likewise, when the Hessian is negative definite (all its eigenvalues
are negative), the point is a local maximum. In multiple dimensions, it is actually
possible to find positive evidence of saddle points in some cases. When at least
one eigenvalue is positive and at least one eigenvalue is negative, we know that
x is a local maximum on one cross section of f but a local minimum on another
cross section. See Fig. 4.5 for an example. Finally, the multidimensional second
derivative test can be inconclusive, just like the univariate version. The test is
inconclusive whenever all of the non-zero eigenvalues have the same sign, but at
least one eigenvalue is zero. This is because the univariate second derivative test is
inconclusive in the cross section corresponding to the zero eigenvalue.

In multiple dimensions, there can be a wide variety of different second derivatives
at a single point, because there is a different second derivative for each direction.
The condition number of the Hessian measures how much the second derivatives
vary. When the Hessian has a poor condition number, gradient descent performs
poorly. This is because in one direction, the derivative increases rapidly, while in
another direction, it increases slowly. Gradient descent is unaware of this change
in the derivative so it does not know that it needs to explore preferentially in
the direction where the derivative remains negative for longer. It also makes it
difficult to choose a good step size. The step size must be small enough to avoid
overshooting the minimum and going uphill in directions with strong positive
curvature. This usually means that the step size is too small to make significant
progress in other directions with less curvature. See Fig. 4.6 for an example.

This issue can be resolved by using information from the Hessian matrix to
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Figure 4.5: A saddle point containing both positive and negative curvature. The function
in this example is f(z) = 2% — 23. Along the axis corresponding to z;, the function

curves upward. This axis is an eigenvector of the Hessian and has a positive eigenvalue.
Along the axis corresponding to x 2, the function curves downward. This direction is an
eigenvector of the Hessian with negative eigenvalue. The name “saddle point” derives from
the saddle-like shape of this function. This is the quintessential example of a function
with a saddle point. In more than one dimension, it is not necessary to have an eigenvalue
of 0 in order to get a saddle point: it is only necessary to have both positive and negative
eigenvalues. We can think of a saddle point with both signs of eigenvalues as being a local

maximum within one cross section and a local minimum within another cross section.
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Figure 4.6: Gradient descent fails to exploit the curvature information contained in the
Hessian matrix. Here we use gradient descent to minimize a quadratic function f( ) whose
Hessian matrix has condition number 5. This means that the direction of most curvature
has five times more curvature than the direction of least curvature. In this case, the most
curvature is in the direction [1,1] T and the least curvature is in the direction [1, —1]7. The
red lines indicate the path followed by gradient descent. This very elongated quadratic
function resembles a long canyon. Gradient descent wastes time repeatedly descending
canyon walls, because they are the steepest feature. Because the step size is somewhat
too large, it has a tendency to overshoot the bottom of the function and thus needs to
descend the opposite canyon wall on the next iteration. The large positive eigenvalue
of the Hessian corresponding to the eigenvector pointed in this direction indicates that
this directional derivative is rapidly increasing, so an optimization algorithm based on
the Hessian could predict that the steepest direction is not actually a promising search
direction in this context.
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guide the search. The simplest method for doing so is known as Newton’s method.
Newton’s method is based on using a second-order Taylor series expansion to
approximate f(x) near some point 20

1
fla) ~ f(a )+(w—w(0))TV:cf(«’B(O))Jré(w—w(o))TH(f)(w(O) )(@—z). (4.11)
If we then solve for the critical point of this function, we obtain:
z* =z — H(f)(x©)'V, (). (4.12)

When f is a positive definite quadratic function, Newton’s method consists of
applying Eq. 4.12 once to jump to the minimum of the function directly. When f is
not truly quadratic but can be locally approximated as a positive definite quadratic,
Newton’s method consists of applying Eq. 4.12 multiple times. Iteratively updating
the approximation and jumping to the minimum of the approximation can reach
the critical point much faster than gradient descent would. This is a useful property
near a local minimum, but it can be a harmful property near a saddle point. As
discussed in Sec. 8.2.3, Newton’s method is only appropriate when the nearby
critical point is a minimum (all the eigenvalues of the Hessian are positive), whereas
gradient descent is not attracted to saddle points unless the gradient points toward
them.

Optimization algorithms such as gradient descent that use only the gradient are
called first-order optimization algorithms. Optimization algorithms such as New-
ton’s method that also use the Hessian matrix are called second-order optimization
algorithms ( : ).

The optimization algorithms employed in most contexts in this book are
applicable to a wide variety of functions, but come with almost no guarantees. This
is because the family of functions used in deep learning is quite complicated. In
many other fields, the dominant approach to optimization is to design optimization
algorithms for a limited family of functions.

In the context of deep learning, we sometimes gain some guarantees by restrict-
ing ourselves to functions that are either Lipschitz continuous or have Lipschitz
continuous derivatives. A Lipschitz continuous function is a function f whose rate
of change is bounded by a Lipschitz constant L:

va, vy, |f(x) — f(y)| < Lz —ylk- (4.13)

This property is useful because it allows us to quantify our assumption that a
small change in the input made by an algorithm such as gradient descent will have
a small change in the output. Lipschitz continuity is also a fairly weak constraint,
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and many optimization problems in deep learning can be made Lipschitz continuous
with relatively minor modifications.

Perhaps the most successful field of specialized optimization is conver optimiza-
tion. Convex optimization algorithms are able to provide many more guarantees
by making stronger restrictions. Convex optimization algorithms are applicable
only to convex functions—functions for which the Hessian is positive semidefinite
everywhere. Such functions are well-behaved because they lack saddle points and
all of their local minima are necessarily global minima. However, most problems
in deep learning are difficult to express in terms of convex optimization. Convex
optimization is used only as a subroutine of some deep learning algorithms. Ideas
from the analysis of convex optimization algorithms can be useful for proving the
convergence of deep learning algorithms. However, in general, the importance of
convex optimization is greatly diminished in the context of deep learning. For
more information about convex optimization, see ( )

or ( ).

4.4 Constrained Optimization

Sometimes we wish not only to maximize or minimize a function f(x) over all
possible values of x. Instead we may wish to find the maximal or minimal value of
f (@) for values of & in some set S. This is known as constrained optimization. Points
x that lie within the set S are called feasible points in constrained optimization
terminology.

We often wish to find a solution that is small in some sense. A common
approach in such situations is to impose a norm constraint, such as ||z|| < 1.

One simple approach to constrained optimization is simply to modify gradient
descent taking the constraint into account. If we use a small constant step size €,
we can make gradient descent steps, then project the result back into S. If we use
a line search, we can search only over step sizes € that yield new « points that are
feasible, or we can project each point on the line back into the constraint region.
When possible, this method can be made more efficient by projecting the gradient
into the tangent space of the feasible region before taking the step or beginning
the line search ( : ).

A more sophisticated approach is to design a different, unconstrained opti-
mization problem whose solution can be converted into a solution to the original,
constrained optimization problem. For example, if we want to minimize f(x) for
x € R? with & constrained to have exactly unit L? norm, we can instead minimize
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g(0) = f([cos 8, sin {7 ) with respect to 6, then return [cos @, sin f] as the solution
to the original problem. This approach requires creativity; the transformation
between optimization problems must be designed specifically for each case we
encounter.

The Karush—-Kuhn—Tucker (KKT) approach! provides a very general solution
to constrained optimization. With the KKT approach, we introduce a new function
called the generalized Lagrangian or generalized Lagrange function.

To define the Lagrangian, we first need to describe S in terms of equations
and inequalities. We want a description of S in terms of m functions ¢(¥ and n
functions A9 so that S= {x | Vi, g (z) = 0 and Vj, h9) (z) < 0}. The equations
involving ¢(9) are called the equality constraints and the inequalities involving h ()
are called tnequality constraints.

We introduce new variables A; and «; for each constraint, these are called the
KKT multipliers. The generalized Lagrangian is then defined as

L(z, A ) = f(z) +Z)\ig(i)(w) + Zajh(j) (z). (4.14)

We can now solve a constrained minimization problem using unconstrained
optimization of the generalized Lagrangian. Observe that, so long as at least one
feasible point exists and f(x) is not permitted to have value oo, then

min max max L(x, A, ). (4.15)
x A o,a>0

has the same optimal objective function value and set of optimal points « as

glelgf(m) (4.16)

This follows because any time the constraints are satisfied,

Lix. )\ = 4.17
max max. (z, A ) = f(x), (4.17)

while any time a constraint is violated,

max max L(x, A, a) = co. (4.18)
A o,a>0

These properties guarantee that no infeasible point will ever be optimal, and that
the optimum within the feasible points is unchanged.

"The KKT approach generalizes the method of Lagrange multipliers which allows equality
constraints but not inequality constraints.
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To perform constrained maximization, we can construct the generalized La-
grange function of — f(x), which leads to this optimization problem:

_ (@) 7,09
mln max max, f(x) + Z)\Zg (x) + Z a;hY (x). (4.19)

We may also convert this to a problem with maximization in the outer loop:

@) (z (J)
maxm)l\n mm f )+ Z)‘ZQ Zoz h (4.20)

The sign of the term for the equality constraints does not matter; we may define it
with addition or subtraction as we wish, because the optimization is free to choose
any sign for each ;.

The inequality constraints are particularly interesting. We say that a constraint
R () is active if h()(x*) = 0. If a constraint is not active, then the solution to
the problem found using that constraint would remain at least a local solution if
that constraint were removed. It is possible that an inactive constraint excludes
other solutions. For example, a convex problem with an entire region of globally
optimal points (a wide, flat, region of equal cost) could have a subset of this
region eliminated by constraints, or a non-convex problem could have better local
stationary points excluded by a constraint that is inactive at convergence. However,
the point found at convergence remains a stationary point whether or not the
inactive constraints are included. Because an inactive b has negative value, then
the solution to ming maxy maxq o>0 L(x, A, @) will have a; = 0. We can thus
observe that at the solution, ah(x) = 0. In other words, for all i, we know that at
least one of the constraints oy; > 0 and h(i)(a:) < 0 must be active at the solution.
To gain some intuition for this idea, we can say that either the solution is on
the boundary imposed by the inequality and we must use its KK'T multiplier to
influence the solution to @, or the inequality has no influence on the solution and
we represent this by zeroing out its KKT multiplier.

The properties that the gradient of the generalized Lagrangian is zero, all
constraints on both  and the KKT multipliers are satisfied, and o ® h(x) =0
are called the Karush-Kuhn-Tucker (KKT) conditions ( : ;

, ). Together, these properties describe the optimal points of constrained
optimization problems.

For more information about the KKT approach, see ( ).
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4.5 Example: Linear Least Squares

Suppose we want to find the value of & that minimizes
1
flz) = 314z — b3 (4.21)

There are specialized linear algebra algorithms that can solve this problem efficiently.
However, we can also explore how to solve it using gradient-based optimization as
a simple example of how these techniques work.

First, we need to obtain the gradient:

Vaof(x)=A" (Ax —b) = AT Ax — A'b. (4.22)

We can then follow this gradient downhill, taking small steps. See Algorithm 4.1
for details.

Algorithm 4.1 An algorithm to minimize f(x) = 4 ||Az — b|[3 with respect to

2
using gradient descent.

Set the step size (€) and tolerance (§) to small, positive numbers.
while ||[AT Az — ATb||, > § do

T T —¢ (ATA:E — ATb)
end while

One can also solve this problem using Newton’s method. In this case, because
the true function is quadratic, the quadratic approximation employed by Newton’s
method is exact, and the algorithm converges to the global minimum in a single
step.

Now suppose we wish to minimize the same function, but subject to the
constraint &'« < 1. To do so, we introduce the Lagrangian

L(z,\) = f(z) + ) (;Ja: _ 1) . (4.23)
We can now solve the problem

i L(z, \). 4.24
min max (z,\) (4.24)

The smallest-norm solution to the unconstrained least squares problem may be
found using the Moore-Penrose pseudoinverse: & = A" b. If this point is feasible,
then it is the solution to the constrained problem. Otherwise, we must find a
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solution where the constraint is active. By differentiating the Lagrangian with
respect to x, we obtain the equation

ATAx — ATb+2)x = 0. (4.25)
This tells us that the solution will take the form
r=(ATA+2XI)"'A'p. (4.26)

The magnitude of A must be chosen such that the result obeys the constraint. We
can find this value by performing gradient ascent on A. To do so, observe

0

— LN =z'z—1. 4.27

L) (127
When the norm of & exceeds 1, this derivative is positive, so to follow the derivative
uphill and increase the Lagrangian with respect to A, we increase \. Because the
coefficient on the &' x penalty has increased, solving the linear equation for = will
now yield a solution with smaller norm. The process of solving the linear equation

and adjusting A continues until  has the correct norm and the derivative on A is
0.

This concludes the mathematical preliminaries that we use to develop machine

learning algorithms. We are now ready to build and analyze some full-fledged
learning systems.
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Chapter 5

Machine Learning Basics

Deep learning is a specific kind of machine learning. In order to understand
deep learning well, one must have a solid understanding of the basic principles
of machine learning. This chapter provides a brief course in the most important
general principles that will be applied throughout the rest of the book. Novice
readers or those who want a wider perspective are encouraged to consider machine
learning textbooks with a more comprehensive coverage of the fundamentals, such
as ( ) or ( ). If you are already familiar with machine
learning basics, feel free to skip ahead to Sec. 5.11. That section covers some per-
spectives on traditional machine learning techniques that have strongly influenced
the development of deep learning algorithms.

We begin with a definition of what a learning algorithm is, and present an
example: the linear regression algorithm. We then proceed to describe how the
challenge of fitting the training data differs from the challenge of finding patterns
that generalize to new data. Most machine learning algorithms have settings
called hyperparameters that must be determined external to the learning algorithm
itself; we discuss how to set these using additional data. Machine learning is
essentially a form of applied statistics with increased emphasis on the use of
computers to statistically estimate complicated functions and a decreased emphasis
on proving confidence intervals around these functions; we therefore present the
two central approaches to statistics: frequentist estimators and Bayesian inference.
Most machine learning algorithms can be divided into the categories of supervised
learning and unsupervised learning; we describe these categories and give some
examples of simple learning algorithms from each category. Most deep learning
algorithms are based on an optimization algorithm called stochastic gradient
descent. We describe how to combine various algorithm components such as an
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optimization algorithm, a cost function, a model, and a dataset to build a machine
learning algorithm. Finally, in Sec. 5.11, we describe some of the factors that have
limited the ability of traditional machine learning to generalize. These challenges
have motivated the development of deep learning algorithms that overcome these
obstacles.

5.1 Learning Algorithms

A machine learning algorithm is an algorithm that is able to learn from data. But
what do we mean by learning? ( ) provides the definition “A computer
program is said to learn from experience E' with respect to some class of tasks T’
and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience F.” One can imagine a very wide variety of experiences
E, tasks T, and performance measures P, and we do not make any attempt in this
book to provide a formal definition of what may be used for each of these entities.
Instead, the following sections provide intuitive descriptions and examples of the
different kinds of tasks, performance measures and experiences that can be used
to construct machine learning algorithms.

5.1.1 The Task, T

Machine learning allows us to tackle tasks that are too difficult to solve with
fixed programs written and designed by human beings. From a scientific and
philosophical point of view, machine learning is interesting because developing our
understanding of machine learning entails developing our understanding of the
principles that underlie intelligence.

In this relatively formal definition of the word “task,” the process of learning
itself is not the task. Learning is our means of attaining the ability to perform the
task. For example, if we want a robot to be able to walk, then walking is the task.
We could program the robot to learn to walk, or we could attempt to directly write
a program that specifies how to walk manually.

Machine learning tasks are usually described in terms of how the machine
learning system should process an example. An example is a collection of features
that have been quantitatively measured from some object or event that we want
the machine learning system to process. We typically represent an example as a
vector & € R™ where each entry z; of the vector is another feature. For example,
the features of an image are usually the values of the pixels in the image.
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Many kinds of tasks can be solved with machine learning. Some of the most
common machine learning tasks include the following;:

e Classification: In this type of task, the computer program is asked to specify
which of k categories some input belongs to. To solve this task, the learning
algorithm is usually asked to produce a function f : R™ — {1,... k}. When
y = f(x), the model assigns an input described by vector x to a category
identified by numeric code y. There are other variants of the classification
task, for example, where f outputs a probability distribution over classes.
An example of a classification task is object recognition, where the input
is an image (usually described as a set of pixel brightness values), and the
output is a numeric code identifying the object in the image. For example,
the Willow Garage PR2 robot is able to act as a waiter that can recognize
different kinds of drinks and deliver them to people on command (

) ). Modern object recognition is best accomplished with

deep learning ( : : : ). Object
recognition is the same basic technology that allows computers to recognize
faces ( , ), which can be used to automatically tag people

in photo collections and allow computers to interact more naturally with
their users.

e Classification with missing inputs: Classification becomes more challenging if
the computer program is not guaranteed that every measurement in its input
vector will always be provided. In order to solve the classification task, the
learning algorithm only has to define a single function mapping from a vector
input to a categorical output. When some of the inputs may be missing,
rather than providing a single classification function, the learning algorithm
must learn a set of functions. Each function corresponds to classifying  with
a different subset of its inputs missing. This kind of situation arises frequently
in medical diagnosis, because many kinds of medical tests are expensive or
invasive. One way to efficiently define such a large set of functions is to learn
a probability distribution over all of the relevant variables, then solve the
classification task by marginalizing out the missing variables. With n input
variables, we can now obtain all 2" different classification functions needed
for each possible set of missing inputs, but we only need to learn a single
function describing the joint probability distribution. See
( ) for an example of a deep probabilistic model applied to such a task
in this way. Many of the other tasks described in this section can also be
generalized to work with missing inputs; classification with missing inputs is
just one example of what machine learning can do.

100



CHAPTER 5. MACHINE LEARNING BASICS

® Regression: In this type of task, the computer program is asked to predict a
numerical value given some input. To solve this task, the learning algorithm
is asked to output a function f : R™ — R. This type of task is similar to
classification, except that the format of output is different. An example of
a regression task is the prediction of the expected claim amount that an
insured person will make (used to set insurance premiums), or the prediction
of future prices of securities. These kinds of predictions are also used for
algorithmic trading.

e Transcription: In this type of task, the machine learning system is asked to
observe a relatively unstructured representation of some kind of data and
transcribe it into discrete, textual form. For example, in optical character
recognition, the computer program is shown a photograph containing an
image of text and is asked to return this text in the form of a sequence
of characters (e.g., in ASCII or Unicode format). Google Street View uses
deep learning to process address numbers in this way ( ,

). Another example is speech recognition, where the computer program
is provided an audio waveform and emits a sequence of characters or word
ID codes describing the words that were spoken in the audio recording. Deep
learning is a crucial component of modern speech recognition systems used
at major companies including Microsoft, IBM and Google ( ,

).

e Machine translation: In a machine translation task, the input already consists
of a sequence of symbols in some language, and the computer program must
convert this into a sequence of symbols in another language. This is commonly
applied to natural languages, such as to translate from English to French.

Deep learning has recently begun to have an important impact on this kind
of task ( , : , ).

e Structured output: Structured output tasks involve any task where the output
is a vector (or other data structure containing multiple values) with important
relationships between the different elements. This is a broad category, and
subsumes the transcription and translation tasks described above, but also
many other tasks. One example is parsing—mapping a natural language
sentence into a tree that describes its grammatical structure and tagging nodes
of the trees as being verbs, nouns, or adverbs, and so on. See ( )
for an example of deep learning applied to a parsing task. Another example
is pixel-wise segmentation of images, where the computer program assigns
every pixel in an image to a specific category. For example, deep learning can
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be used to annotate the locations of roads in aerial photographs (

, ). The output need not have its form mirror the structure of
the input as closely as in these annotation-style tasks. For example, in image
captioning, the computer program observes an image and outputs a natural
language sentence describing the image ( , ,b; ,

, : , ). These tasks are called structured output
tasks because the program must output several values that are all tightly
inter-related. For example, the words produced by an image captioning
program must form a valid sentence.

e Anomaly detection: In this type of task, the computer program sifts through
a set of events or objects, and flags some of them as being unusual or atypical.
An example of an anomaly detection task is credit card fraud detection. By
modeling your purchasing habits, a credit card company can detect misuse
of your cards. If a thief steals your credit card or credit card information,
the thief’s purchases will often come from a different probability distribution
over purchase types than your own. The credit card company can prevent
fraud by placing a hold on an account as soon as that card has been used
for an uncharacteristic purchase. See ( ) for a survey of
anomaly detection methods.

e Synthesis and sampling: In this type of task, the machine learning algorithm
is asked to generate new examples that are similar to those in the training
data. Synthesis and sampling via machine learning can be useful for media
applications where it can be expensive or boring for an artist to generate large
volumes of content by hand. For example, video games can automatically
generate textures for large objects or landscapes, rather than requiring an
artist to manually label each pixel ( , ). In some cases, we
want the sampling or synthesis procedure to generate some specific kind of
output given the input. For example, in a speech synthesis task, we provide a,
written sentence and ask the program to emit an audio waveform containing
a spoken version of that sentence. This is a kind of structured output task,
but with the added qualification that there is no single correct output for
each input, and we explicitly desire a large amount of variation in the output,
in order for the output to seem more natural and realistic.

e Imputation of missing values: In this type of task, the machine learning
algorithm is given a new example & € R™, but with some entries z; of x
missing. The algorithm must provide a prediction of the values of the missing
entries.
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e Denoising: In this type of task, the machine learning algorithm is given in
input a corrupted example € € R" obtained by an unknown corruption process
from a clean example x € R". The learner must predict the clean example
x from its corrupted version &, or more generally predict the conditional
probability distribution p(x | €).

e Density estimation or probability mass function estimation: In the density
estimation problem, the machine learning algorithm is asked to learn a
function pmodel : R™ — R, where pmodel () can be interpreted as a probability
density function (if x is continuous) or a probability mass function (if x is
discrete) on the space that the examples were drawn from. To do such a task
well (we will specify exactly what that means when we discuss performance
measures P), the algorithm needs to learn the structure of the data it
has seen. It must know where examples cluster tightly and where they
are unlikely to occur. Most of the tasks described above require that the
learning algorithm has at least implicitly captured the structure of the
probability distribution. Density estimation allows us to explicitly capture
that distribution. In principle, we can then perform computations on that
distribution in order to solve the other tasks as well. For example, if we
have performed density estimation to obtain a probability distribution p(x),
we can use that distribution to solve the missing value imputation task. If
a value x; is missing and all of the other values, denoted x_;, are given,
then we know the distribution over it is given by p(z; | ;). In practice,
density estimation does not always allow us to solve all of these related tasks,
because in many cases the required operations on p(a) are computationally
intractable.

Of course, many other tasks and types of tasks are possible. The types of tasks
we list here are intended only to provide examples of what machine learning can
do, not to define a rigid taxonomy of tasks.

5.1.2 The Performance Measure, P

In order to evaluate the abilities of a machine learning algorithm, we must design
a quantitative measure of its performance. Usually this performance measure P is
specific to the task T being carried out by the system.

For tasks such as classification, classification with missing inputs, and transcrip-
tion, we often measure the accuracy of the model. Accuracy is just the proportion
of examples for which the model produces the correct output. We can also obtain
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equivalent information by measuring the error rate, the proportion of examples for
which the model produces an incorrect output. We often refer to the error rate as
the expected 0-1 loss. The 0-1 loss on a particular example is 0 if it is correctly
classified and 1 if it is not. For tasks such as density estimation, it does not make
sense to measure accuracy, error rate, or any other kind of 0-1 loss. Instead, we
must use a different performance metric that gives the model a continuous-valued
score for each example. The most common approach is to report the average
log-probability the model assigns to some examples.

Usually we are interested in how well the machine learning algorithm performs
on data that it has not seen before, since this determines how well it will work when
deployed in the real world. We therefore evaluate these performance measures
using a test set of data that is separate from the data used for training the machine
learning system.

The choice of performance measure may seem straightforward and objective,
but it is often difficult to choose a performance measure that corresponds well to
the desired behavior of the system.

In some cases, this is because it is difficult to decide what should be measured.
For example, when performing a transcription task, should we measure the accuracy
of the system at transcribing entire sequences, or should we use a more fine-grained
performance measure that gives partial credit for getting some elements of the
sequence correct? When performing a regression task, should we penalize the
system more if it frequently makes medium-sized mistakes or if it rarely makes
very large mistakes? These kinds of design choices depend on the application.

In other cases, we know what quantity we would ideally like to measure, but
measuring it is impractical. For example, this arises frequently in the context of
density estimation. Many of the best probabilistic models represent probability
distributions only implicitly. Computing the actual probability value assigned to
a specific point in space in many such models is intractable. In these cases, one
must design an alternative criterion that still corresponds to the design objectives,
or design a good approximation to the desired criterion.

5.1.3 The Experience, F

Machine learning algorithms can be broadly categorized as unsupervised or su-
pervised by what kind of experience they are allowed to have during the learning
process.

Most of the learning algorithms in this book can be understood as being allowed
to experience an entire dataset. A dataset is a collection of many examples, as
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defined in Sec. 5.1.1. Sometimes we will also call examples data points.

One of the oldest datasets studied by statisticians and machine learning re-
searchers is the Iris dataset ( ) ). It is a collection of measurements of
different parts of 150 iris plants. Each individual plant corresponds to one example.
The features within each example are the measurements of each of the parts of the
plant: the sepal length, sepal width, petal length and petal width. The dataset
also records which species each plant belonged to. Three different species are
represented in the dataset.

Unsupervised learning algorithms experience a dataset containing many features,
then learn useful properties of the structure of this dataset. In the context of deep
learning, we usually want to learn the entire probability distribution that generated
a dataset, whether explicitly as in density estimation or implicitly for tasks like
synthesis or denoising. Some other unsupervised learning algorithms perform other
roles, like clustering, which consists of dividing the dataset into clusters of similar
examples.

Supervised learning algorithms experience a dataset containing features, but
each example is also associated with a label or target. For example, the Iris dataset
is annotated with the species of each iris plant. A supervised learning algorithm
can study the Iris dataset and learn to classify iris plants into three different species
based on their measurements.

Roughly speaking, unsupervised learning involves observing several examples
of a random vector x, and attempting to implicitly or explicitly learn the proba-
bility distribution p(x), or some interesting properties of that distribution, while
supervised learning involves observing several examples of a random vector x and
an associated value or vector y, and learning to predict y from x, usually by
estimating p(y | x). The term supervised learning originates from the view of
the target y being provided by an instructor or teacher who shows the machine
learning system what to do. In unsupervised learning, there is no instructor or
teacher, and the algorithm must learn to make sense of the data without this guide.

Unsupervised learning and supervised learning are not formally defined terms.
The lines between them are often blurred. Many machine learning technologies can
be used to perform both tasks. For example, the chain rule of probability states
that for a vector x € R™, the joint distribution can be decomposed as

n

p(x) =] p(xi | %1, -, xim1) (5.1)

i=1
This decomposition means that we can solve the ostensibly unsupervised problem of

modeling p(x) by splitting it into n supervised learning problems. Alternatively, we
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can solve the supervised learning problem of learning p(y | X) by using traditional
unsupervised learning technologies to learn the joint distribution p(x,y) and
inferring
p(x,y)
plylx) =7 (5.2)
>y P(x,y")

Though unsupervised learning and supervised learning are not completely formal or
distinct concepts, they do help to roughly categorize some of the things we do with
machine learning algorithms. Traditionally, people refer to regression, classification
and structured output problems as supervised learning. Density estimation in
support of other tasks is usually considered unsupervised learning.

Other variants of the learning paradigm are possible. For example, in semi-
supervised learning, some examples include a supervision target but others do
not. In multi-instance learning, an entire collection of examples is labeled as
containing or not containing an example of a class, but the individual members
of the collection are not labeled. For a recent example of multi-instance learning
with deep models, see ( ).

Some machine learning algorithms do not just experience a fixed dataset. For
example, reinforcement learning algorithms interact with an environment, so there
is a feedback loop between the learning system and its experiences. Such algorithms

are beyond the scope of this book. Please see ( ) or
( ) for information about reinforcement learning, and
( ) for the deep learning approach to reinforcement learning.

Most machine learning algorithms simply experience a dataset. A dataset can
be described in many ways. In all cases, a dataset is a collection of examples,
which are in turn collections of features.

One common way of describing a dataset is with a design matriz. A design
matrix is a matrix containing a different example in each row. Each column of the
matrix corresponds to a different feature. For instance, the Iris dataset contains
150 examples with four features for each example. This means we can represent
the dataset with a design matrix X € RY%*4  where X1 is the sepal length of
plant 7, X; 2 is the sepal width of plant ¢, etc. We will describe most of the learning
algorithms in this book in terms of how they operate on design matrix datasets.

Of course, to describe a dataset as a design matrix, it must be possible to
describe each example as a vector, and each of these vectors must be the same size.
This is not always possible. For example, if you have a collection of photographs
with different widths and heights, then different photographs will contain different
numbers of pixels, so not all of the photographs may be described with the same
length of vector. Sec. 9.7 and Chapter 10 describe how to handle different types
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of such heterogeneous data. In cases like these, rather than describing the dataset
as a matrix with m rows, we will describe it as a set containing m elements:
{zc(l), PAC m(m)}. This notation does not imply that any two example vectors
2 and 1) have the same size.

In the case of supervised learning, the example contains a label or target as
well as a collection of features. For example, if we want to use a learning algorithm
to perform object recognition from photographs, we need to specify which object
appears in each of the photos. We might do this with a numeric code, with 0
signifying a person, 1 signifying a car, 2 signifying a cat, etc. Often when working
with a dataset containing a design matrix of feature observations X, we also
provide a vector of labels y, with g providing the label for example «.

Of course, sometimes the label may be more than just a single number. For
example, if we want to train a speech recognition system to transcribe entire
sentences, then the label for each example sentence is a sequence of words.

Just as there is no formal definition of supervised and unsupervised learning,
there is no rigid taxonomy of datasets or experiences. The structures described here
cover most cases, but it is always possible to design new ones for new applications.

5.1.4 Example: Linear Regression

Our definition of a machine learning algorithm as an algorithm that is capable
of improving a computer program’s performance at some task via experience is
somewhat abstract. To make this more concrete, we present an example of a simple
machine learning algorithm: linear regression. We will return to this example
repeatedly as we introduce more machine learning concepts that help to understand
its behavior.

As the name implies, linear regression solves a regression problem. In other
words, the goal is to build a system that can take a vector € R™ as input and
predict the value of a scalar y € R as its output. In the case of linear regression,
the output is a linear function of the input. Let ¢ be the value that our model
predicts y should take on. We define the output to be

j=w'x (5.3)

where w € R" is a vector of parameters.

Parameters are values that control the behavior of the system. In this case, w; is
the coefficient that we multiply by feature z; before summing up the contributions
from all the features. We can think of w as a set of weights that determine how
each feature affects the prediction. If a feature x; receives a positive weight w;,
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then increasing the value of that feature increases the value of our prediction .
If a feature receives a negative weight, then increasing the value of that feature
decreases the value of our prediction. If a feature’s weight is large in magnitude,
then it has a large effect on the prediction. If a feature’s weight is zero, it has no
effect on the prediction.

We thus have a definition of our task 7': to predict y from x by outputting

Tx. Next we need a definition of our performance measure, P.

J=w

Suppose that we have a design matrix of m example inputs that we will not
use for training, only for evaluating how well the model performs. We also have
a vector of regression targets providing the correct value of y for each of these
examples. Because this dataset will only be used for evaluation, we call it the test
set. We refer to the design matrix of inputs as X *st) and the vector of regression

targets as y(test),

One way of measuring the performance of the model is to compute the mean
squared error of the model on the test set. If §(test) gives the predictions of the
model on the test set, then the mean squared error is given by

1
_ ~ (test) __ , (test)y2
MSEktest po= E (y Y )i (5.4)

2

Intuitively, one can see that this error measure decreases to 0 when g (test) = q(test),
We can also see that

1

MSEtest = ||@(test) - y(test) | ’% ) (55)
m

so the error increases whenever the Euclidean distance between the predictions

and the targets increases.

To make a machine learning algorithm, we need to design an algorithm that
will improve the weights w in a way that reduces MSE;.¢ when the algorithm
is allowed to gain experience by observing a training set (X(train) g (train)y = Ope
intuitive way of doing this (which we will justify later, in Sec. 5.5.1) is just to

minimize the mean squared error on the training set, MSE ain.

To minimize MSE¢;.in, we can simply solve for where its gradient is 0:

v'wl\/ISEtrain =0 (56)
1 ~ (train rain
= Vo—||g 7 — yiraim)|2 = g (5.7)
m
1 rain rain
= V|| X0 — g = g (5.8)
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Figure 5.1: A linear regression problem, with a training set consisting of ten data points,
each containing one feature. Because there is only one feature, the weight vector w
contains only a single parameter to learn,w;. (Left) Observe that linear regression learns
to set w; such that the line y = w; 2 comes as close as possible to passing through all the
training points. (Right) The plotted point indicates the value ofw ; found by the normal
equations, which we can see minimizes the mean squared error on the training set.

. . T . .
N vw (X (tram)w . y(traln)) (X(traln) w — y(traln)) -0 (59)
VY, (wTX(train)TX (train)w o 2’(UT X(train)Ty(train) + y(train)Ty(train)) =0
| | | | (5.10)
- 2X(tra1n)TX(tra1n)w _9X (traln)Ty(traln) —0 (511)
Sow = ( x (train) T y(train) )—1 x(train) T y(train) (5.12)

The system of equations whose solution is given by Eq. 5.12 is known as the
normal equations. Evaluating Eq. 5.12 constitutes a simple learning algorithm.
For an example of the linear regression learning algorithm in action, see Fig. 5.1.

It is worth noting that the term linear regression is often used to refer to a
slightly more sophisticated model with one additional parameter—an intercept
term b. In this model

jg=w'x+b (5.13)
so the mapping from parameters to predictions is still a linear function but the
mapping from features to predictions is now an affine function. This extension to
affine functions means that the plot of the model’s predictions still looks like a

line, but it need not pass through the origin. Instead of adding the bias parameter
b, one can continue to use the model with only weights but augment  with an
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extra entry that is always set to 1. The weight corresponding to the extra 1 entry
plays the role of the bias parameter. We will frequently use the term “linear” when
referring to affine functions throughout this book.

The intercept term b is often called the bias parameter of the affine transfor-
mation. This terminology derives from the point of view that the output of the
transformation is biased toward being b in the absence of any input. This term
is different from the idea of a statistical bias, in which a statistical estimation
algorithm’s expected estimate of a quantity is not equal to the true quantity.

Linear regression is of course an extremely simple and limited learning algorithm,
but it provides an example of how a learning algorithm can work. In the subsequent
sections we will describe some of the basic principles underlying learning algorithm
design and demonstrate how these principles can be used to build more complicated
learning algorithms.

5.2 Capacity, Overfitting and Underfitting

The central challenge in machine learning is that we must perform well on new,
previously unseen inputs—not just those on which our model was trained. The
ability to perform well on previously unobserved inputs is called generalization.

Typically, when training a machine learning model, we have access to a training
set, we can compute some error measure on the training set called the training
error, and we reduce this training error. So far, what we have described is simply
an optimization problem. What separates machine learning from optimization is
that we want the generalization error, also called the test error, to be low as well.
The generalization error is defined as the expected value of the error on a new
input. Here the expectation is taken across different possible inputs, drawn from
the distribution of inputs we expect the system to encounter in practice.

We typically estimate the generalization error of a machine learning model by
measuring its performance on a test set of examples that were collected separately
from the training set.

In our linear regression example, we trained the model by minimizing the

training error,
1

m (train)

| (i) — gt 2 (514)

but we actually care about the test error, ﬁ || X (test)qyy — gy(test) ||2

How can we affect performance on the test set when we get to observe only the
training set?” The field of statistical learning theory provides some answers. If the
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training and the test set are collected arbitrarily, there is indeed little we can do.
If we are allowed to make some assumptions about how the training and test set
are collected, then we can make some progress.

The train and test data are generated by a probability distribution over datasets
called the data generating process. We typically make a set of assumptions known
collectively as the i.i.d. assumptions These assumptions are that the examples
in each dataset are independent from each other, and that the train set and test
set are identically distributed, drawn from the same probability distribution as
each other. This assumption allows us to describe the data generating process
with a probability distribution over a single example. The same distribution is
then used to generate every train example and every test example. We call that
shared underlying distribution the data generating distribution, denoted pgata. This
probabilistic framework and the i.i.d. assumptions allow us to mathematically
study the relationship between training error and test error.

One immediate connection we can observe between the training and test error
is that the expected training error of a randomly selected model is equal to the
expected test error of that model. Suppose we have a probability distribution
p(x,y) and we sample from it repeatedly to generate the train set and the test
set. For some fixed value w, the expected training set error is exactly the same as
the expected test set error, because both expectations are formed using the same
dataset sampling process. The only difference between the two conditions is the
name we assign to the dataset we sample.

Of course, when we use a machine learning algorithm, we do not fix the
parameters ahead of time, then sample both datasets. We sample the training set,
then use it to choose the parameters to reduce training set error, then sample the
test set. Under this process, the expected test error is greater than or equal to
the expected value of training error. The factors determining how well a machine
learning algorithm will perform are its ability to:

1. Make the training error small.

2. Make the gap between training and test error small.

These two factors correspond to the two central challenges in machine learning:
underfitting and owverfitting. Underfitting occurs when the model is not able to
obtain a sufficiently low error value on the training set. Overfitting occurs when
the gap between the training error and test error is too large.

We can control whether a model is more likely to overfit or underfit by altering
its capacity. Informally, a model’s capacity is its ability to fit a wide variety of
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functions. Models with low capacity may struggle to fit the training set. Models
with high capacity can overfit by memorizing properties of the training set that do
not serve them well on the test set.

One way to control the capacity of a learning algorithm is by choosing its
hypothesis space, the set of functions that the learning algorithm is allowed to
select as being the solution. For example, the linear regression algorithm has the
set of all linear functions of its input as its hypothesis space. We can generalize
linear regression to include polynomials, rather than just linear functions, in its
hypothesis space. Doing so increases the model’s capacity.

A polynomial of degree one gives us the linear regression model with which we
are already familiar, with prediction

7= b+ wz. (5.15)

By introducing 2?2 as another feature provided to the linear regression model, we
can learn a model that is quadratic as a function of x:

§=b+wir 4+ wya?. (5.16)

Though this model implements a quadratic function of its input, the output is
still a linear function of the parameters, so we can still use the normal equations
to train the model in closed form. We can continue to add more powers of x as
additional features, for example to obtain a polynomial of degree 9:

J=b+> wa (5.17)
=1

Machine learning algorithms will generally perform best when their capacity
is appropriate in regard to the true complexity of the task they need to perform
and the amount of training data they are provided with. Models with insufficient
capacity are unable to solve complex tasks. Models with high capacity can solve
complex tasks, but when their capacity is higher than needed to solve the present
task they may overfit.

Fig. 5.2 shows this principle in action. We compare a linear, quadratic and
degree-9 predictor attempting to fit a problem where the true underlying function
is quadratic. The linear function is unable to capture the curvature in the true un-
derlying problem, so it underfits. The degree-9 predictor is capable of representing
the correct function, but it is also capable of representing infinitely many other
functions that pass exactly through the training points, because we have more
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parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

Underfitting Appropriate capacity Overfitting
eo®
. /< . >
[ [ ]
Zo Zo Zo

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly sampling x values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. (Center) A
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. (Right) A polynomial of degree 9 fit to
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning
algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection
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of the optimization algorithm, mean that the learning algorithm’s effective capacity
may be less than the representational capacity of the model family.

Our modern ideas about improving the generalization of machine learning
models are refinements of thought dating back to philosophers at least as early
as Ptolemy. Many early scholars invoke a principle of parsimony that is now
most widely known as Occam’s razor (c. 1287-1347). This principle states that
among competing hypotheses that explain known observations equally well, one
should choose the “simplest” one. This idea was formalized and made more precise
in the 20th century by the founders of statistical learning theory (

Y Y Y Y Y Y Y )‘

Statistical learning theory provides various means of quantifying model capacity.
Among these, the most well-known is the Vapnik-Chervonenkis dimension, or VC
dimension. The VC dimension measures the capacity of a binary classifier. The
VC dimension is defined as being the largest possible value of m for which there
exists a training set of m different & points that the classifier can label arbitrarily.

Quantifying the capacity of the model allows statistical learning theory to
make quantitative predictions. The most important results in statistical learning
theory show that the discrepancy between training error and generalization error
is bounded from above by a quantity that grows as the model capacity grows but
shrinks as the number of training examples increases ( ,

: , : , : , ). These bounds provide
intellectual justification that machine learning algorithms can work, but they are
rarely used in practice when working with deep learning algorithms. This is in
part because the bounds are often quite loose and in part because it can be quite
difficult to determine the capacity of deep learning algorithms. The problem of
determining the capacity of a deep learning model is especially difficult because the
effective capacity is limited by the capabilities of the optimization algorithm, and
we have little theoretical understanding of the very general non-convex optimization
problems involved in deep learning.

We must remember that while simpler functions are more likely to generalize
(to have a small gap between training and test error) we must still choose a
sufficiently complex hypothesis to achieve low training error. Typically, training
error decreases until it asymptotes to the minimum possible error value as model
capacity increases (assuming the error measure has a minimum value). Typically,
generalization error has a U-shaped curve as a function of model capacity. This is
illustrated in Fig. 5.3.

To reach the most extreme case of arbitrarily high capacity, we introduce
the concept of non-parametric models. So far, we have seen only parametric
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Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression, which
has a fixed-length vector of weights, the nearest neighbor regression model simply
stores the X and y from the training set. When asked to classify a test point «,
the model looks up the nearest entry in the training set and returns the associated

regression target. In other words, § = y where i = argmin||X;. — x|[3. The
algorithm can also be generalized to distance metrics other than the L? norm, such
as learned distance metrics ( : ). If the algorithm is allowed

to break ties by averaging the 1; values for all X; . that are tied for nearest, then
this algorithm is able to achieve the minimum possible training error (which might
be greater than zero, if two identical inputs are associated with different outputs)
on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
parametric learning algorithm inside another algorithm that increases the number
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of parameters as needed. For example, we could imagine an outer loop of learning
that changes the degree of the polynomial learned by linear regression on top of a
polynomial expansion of the input.

The ideal model is an oracle that simply knows the true probability distribution
that generates the data. Even such a model will still incur some error on many
problems, because there may still be some noise in the distribution. In the case
of supervised learning, the mapping from @ to y may be inherently stochastic,
or y may be a deterministic function that involves other variables besides those
included in . The error incurred by an oracle making predictions from the true
distribution p(«,y) is called the Bayes error.

Training and generalization error vary as the size of the training set varies.
Expected generalization error can never increase as the number of training examples
increases. For non-parametric models, more data yields better generalization until
the best possible error is achieved. Any fixed parametric model with less than
optimal capacity will asymptote to an error value that exceeds the Bayes error. See
Fig. 5.4 for an illustration. Note that it is possible for the model to have optimal
capacity and yet still have a large gap between training and generalization error.
In this situation, we may be able to reduce this gap by gathering more training
examples.

5.2.1 The No Free Lunch Theorem

Learning theory claims that a machine learning algorithm can generalize well from
a finite training set of examples. This seems to contradict some basic principles of
logic. Inductive reasoning, or inferring general rules from a limited set of examples,
is not logically valid. To logically infer a rule describing every member of a set,
one must have information about every member of that set.

In part, machine learning avoids this problem by offering only probabilistic rules,
rather than the entirely certain rules used in purely logical reasoning. Machine
learning promises to find rules that are probably correct about most members of
the set they concern.

Unfortunately, even this does not resolve the entire problem. The no free lunch
theorem for machine learning ( ) ) states that, averaged over all possible
data generating distributions, every classification algorithm has the same error
rate when classifying previously unobserved points. In other words, in some sense,
no machine learning algorithm is universally any better than any other. The most
sophisticated algorithm we can conceive of has the same average performance (over
all possible tasks) as merely predicting that every point belongs to the same class.

116



CHAPTER 5. MACHINE LEARNING BASICS

Bayes error

3.0 a
- Train (quadratic)

CZ; 2'0 Test (quadratic)

= Test (optimal capacity)

1. . . . B
= 19 Train (optimal capacity)
=

1ok e N ———— -

0.5 . _

0.0 ol

10 10

20 AL AL L L L

—_
(@51

—_
=]

ot

3

Optimal capacity (polynomial degree)

10

Number of training examples

Figure 5.4: The effect of the training dataset size on the train and test error, as well as
on the optimal model capacity. We constructed a synthetic regression problem based on
adding moderate amount of noise to a degree 5 polynomial, generated a single test set,
and then generated several different sizes of training set. For each size, we generated 40
different training sets in order to plot error bars showing 95% confidence intervals. (Top)
The MSE on the train and test set for two different models: a quadratic model, and a
model with degree chosen to minimize the test error. Both are fit in closed form. For
the quadratic model, the training error increases as the size of the training set increases.
This is because larger datasets are harder to fit. Simultaneously, the test error decreases,
because fewer incorrect hypotheses are consistent with the training data. The quadratic
model does not have enough capacity to solve the task, so its test error asymptotes to
a high value. The test error at optimal capacity asymptotes to the Bayes error. The
training error can fall below the Bayes error, due to the ability of the training algorithm
to memorize specific instances of the training set. As the training size increases to infinity,
the training error of any fixed-capacity model (here, the quadratic model) must rise to at
least the Bayes error. (Bottom) As the training set size increases, the optimal capacity
(shown here as the degree of the optimal polynomial regressor) increases. The optimal
capacity plateaus after reaching sufficient complexity to solve the task.
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Fortunately, these results hold only when we average over all possible data
generating distributions. If we make assumptions about the kinds of probability
distributions we encounter in real-world applications, then we can design learning
algorithms that perform well on these distributions.

This means that the goal of machine learning research is not to seek a universal
learning algorithm or the absolute best learning algorithm. Instead, our goal is to
understand what kinds of distributions are relevant to the “real world” that an Al
agent experiences, and what kinds of machine learning algorithms perform well on
data drawn from the kinds of data generating distributions we care about.

5.2.2 Regularization

The no free lunch theorem implies that we must design our machine learning
algorithms to perform well on a specific task. We do so by building a set of
preferences into the learning algorithm. When these preferences are aligned with
the learning problems we ask the algorithm to solve, it performs better.

So far, the only method of modifying a learning algorithm we have discussed is
to increase or decrease the model’s capacity by adding or removing functions from
the hypothesis space of solutions the learning algorithm is able to choose. We gave
the specific example of increasing or decreasing the degree of a polynomial for a
regression problem. The view we have described so far is oversimplified.

The behavior of our algorithm is strongly affected not just by how large we
make the set of functions allowed in its hypothesis space, but by the specific identity
of those functions. The learning algorithm we have studied so far, linear regression,
has a hypothesis space consisting of the set of linear functions of its input. These
linear functions can be very useful for problems where the relationship between
inputs and outputs truly is close to linear. They are less useful for problems
that behave in a very nonlinear fashion. For example, linear regression would
not perform very well if we tried to use it to predict sin(z) from x. We can thus
control the performance of our algorithms by choosing what kind of functions we
allow them to draw solutions from, as well as by controlling the amount of these
functions.

We can also give a learning algorithm a preference for one solution in its
hypothesis space to another. This means that both functions are eligible, but one
is preferred. The unpreferred solution be chosen only if it fits the training data
significantly better than the preferred solution.

For example, we can modify the training criterion for linear regression to
include weight decay. To perform linear regression with weight decay, we minimize
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a sum comprising both the mean squared error on the training and a criterion
J(w) that expresses a preference for the weights to have smaller squared I? norm.
Specifically,

J(w) = MSE pain + Aw ' w, (5.18)

where A is a value chosen ahead of time that controls the strength of our preference
for smaller weights. When A = 0, we impose no preference, and larger A forces the
weights to become smaller. Minimizing J(w) results in a choice of weights that
make a tradeoff between fitting the training data and being small. This gives us
solutions that have a smaller slope, or put weight on fewer of the features. As an
example of how we can control a model’s tendency to overfit or underfit via weight

decay, we can train a high-degree polynomial regression model with different values
of A\. See Fig. 5.5 for the results.

Underfitting Appropriate weight decay Overfitting
(Excessive \) (Medium M) (A—0)
o®
.
= > >
|® |®
Lo o Lo

Figure 5.5: We fit a high-degree polynomial regression model to our example training set
from Fig. 5.2. The true function is quadratic, but here we use only models with degree 9.
We vary the amount of weight decay to prevent these high-degree models from overfitting.
(Left) With very large A, we can force the model to learn a function with no slope at
all. This underfits because it can only represent a constant function. (Center) With a
medium value of A, the learning algorithm recovers a curve with the right general shape.
Even though the model is capable of representing functions with much more complicated
shape, weight decay has encouraged it to use a simpler function described by smaller
coefficients. (Right) With weight decay approaching zero (i.e., using the Moore-Penrose
pseudoinverse to solve the underdetermined problem with minimal regularization), the
degree-9 polynomial overfits significantly, as we saw in Fig. 5.2.

More generally, we can regularize a model that learns a function f(x;8) by
adding a penalty called a regularizer to the cost function. In the case of weight
decay, the regularizer is Q(w) = w 'w. In Chapter 7, we will see that many other
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regularizers are possible.

Expressing preferences for one function over another is a more general way
of controlling a model’s capacity than including or excluding members from the
hypothesis space. We can think of excluding a function from a hypothesis space as
expressing an infinitely strong preference against that function.

In our weight decay example, we expressed our preference for linear functions
defined with smaller weights explicitly, via an extra term in the criterion we
minimize. There are many other ways of expressing preferences for different
solutions, both implicitly and explicitly. Together, these different approaches are
known as reqularization. Regularization is any modification we make to
a learning algorithm that is intended to reduce its generalization error
but not its training error. Regularization is one of the central concerns of the
field of machine learning, rivaled in its importance only by optimization.

The no free lunch theorem has made it clear that there is no best machine
learning algorithm, and, in particular, no best form of regularization. Instead
we must choose a form of regularization that is well-suited to the particular task
we want to solve. The philosophy of deep learning in general and this book in
particular is that a very wide range of tasks (such as all of the intellectual tasks
that people can do) may all be solved effectively using very general-purpose forms
of regularization.

5.3 Hyperparameters and Validation Sets

Most machine learning algorithms have several settings that we can use to control
the behavior of the learning algorithm. These settings are called hyperparameters.
The values of hyperparameters are not adapted by the learning algorithm itself
(though we can design a nested learning procedure where one learning algorithm
learns the best hyperparameters for another learning algorithm).

In the polynomial regression example we saw in Fig. 5.2, there is a single hyper-
parameter: the degree of the polynomial, which acts as a capacity hyperparameter.
The )\ value used to control the strength of weight decay is another example of a
hyperparameter.

Sometimes a setting is chosen to be a hyperparameter that the learning algo-
rithm does not learn because it is difficult to optimize. More frequently, we do
not learn the hyperparameter because it is not appropriate to learn that hyper-
parameter on the training set. This applies to all hyperparameters that control
model capacity. If learned on the training set, such hyperparameters would always
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choose the maximum possible model capacity, resulting in overfitting (refer to
Fig. 5.3). For example, we can always fit the training set better with a higher
degree polynomial and a weight decay setting of A = 0 than we could with a lower
degree polynomial and a positive weight decay setting.

To solve this problem, we need a wvalidation set of examples that the training
algorithm does not observe.

Earlier we discussed how a held-out test set, composed of examples coming from
the same distribution as the training set, can be used to estimate the generalization
error of a learner, after the learning process has completed. It is important that the
test examples are not used in any way to make choices about the model, including
its hyperparameters. For this reason, no example from the test set can be used
in the validation set. Therefore, we always construct the validation set from the
training data. Specifically, we split the training data into two disjoint subsets. One
of these subsets is used to learn the parameters. The other subset is our validation
set, used to estimate the generalization error during or after training, allowing
for the hyperparameters to be updated accordingly. The subset of data used to
learn the parameters is still typically called the training set, even though this
may be confused with the larger pool of data used for the entire training process.
The subset of data used to guide the selection of hyperparameters is called the
validation set. Typically, one uses about 80% of the training data for training and
20% for validation. Since the validation set is used to “train” the hyperparameters,
the validation set error will underestimate the generalization error, though typically
by a smaller amount than the training error. After all hyperparameter optimization
is complete, the generalization error may be estimated using the test set.

In practice, when the same test set has been used repeatedly to evaluate
performance of different algorithms over many years, and especially if we consider
all the attempts from the scientific community at beating the reported state-of-
the-art performance on that test set, we end up having optimistic evaluations with
the test set as well. Benchmarks can thus become stale and then do not reflect the
true field performance of a trained system. Thankfully, the community tends to
move on to new (and usually more ambitious and larger) benchmark datasets.

5.3.1 Cross-Validation

Dividing the dataset into a fixed training set and a fixed test set can be problematic
if it results in the test set being small. A small test set implies statistical uncertainty
around the estimated average test error, making it difficult to claim that algorithm
A works better than algorithm B on the given task.
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When the dataset has hundreds of thousands of examples or more, this is not
a serious issue. When the dataset is too small, there are alternative procedures,
which allow one to use all of the examples in the estimation of the mean test
error, at the price of increased computational cost. These procedures are based on
the idea of repeating the training and testing computation on different randomly
chosen subsets or splits of the original dataset. The most common of these is the
k-fold cross-validation procedure, shown in Algorithm 5.1, in which a partition
of the dataset is formed by splitting it into k£ non-overlapping subsets. The test
error may then be estimated by taking the average test error across k trials. On
trial 7, the 7-th subset of the data is used as the test set and the rest of the data is
used as the training set. One problem is that there exist no unbiased estimators of
the variance of such average error estimators ( , ), but
approximations are typically used.

5.4 Estimators, Bias and Variance

The field of statistics gives us many tools that can be used to achieve the machine
learning goal of solving a task not only on the training set but also to generalize.
Foundational concepts such as parameter estimation, bias and variance are useful
to formally characterize notions of generalization, underfitting and overfitting.

5.4.1 Point Estimation

Point estimation is the attempt to provide the single “best” prediction of some
quantity of interest. In general the quantity of interest can be a single parameter
or a vector of parameters in some parametric model, such as the weights in our
linear regression example in Sec. 5.1.4, but it can also be a whole function.

In order to distinguish estimates of parameters from their true value, our

A

convention will be to denote a point estimate of a parameter 6 by 6.

Let {:13(1), . ,m(m)} be a set of m independent and identically distributed
(i.i.d.) data points. A point estimator or statistic is any function of the data:

A~

6, =gz, .. ™). (5.19)

The definition does not require that g return a value that is close to the true
0 or even that the range of g is the same as the set of allowable values of 6.
This definition of a point estimator is very general and allows the designer of an
estimator great flexibility. While almost any function thus qualifies as an estimator,
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Algorithm 5.1 The k-fold cross-validation algorithm. It can be used to estimate
generalization error of a learning algorithm A when the given dataset D is too
small for a simple train/test or train/valid split to yield accurate estimation of
generalization error, because the mean of a loss L on a small test set may have too
high variance. The dataset D contains as elements the abstract examples z(?) (for
the i-th example), which could stand for an (input,target) pair z(9) = (22 ()
in the case of supervised learning, or for just an input z(¥ = 2 in the case
of unsupervised learning. The algorithm returns the vector of errors e for each
example in D, whose mean is the estimated generalization error. The errors on
individual examples can be used to compute a confidence interval around the mean
(Eq. 5.47). While these confidence intervals are not well-justified after the use of
cross-validation, it is still common practice to use them to declare that algorithm A
is better than algorithm B only if the confidence interval of the error of algorithm
A lies below and does not intersect the confidence interval of algorithm B.

Define KFoldXV(D, A, L, k):
Require: D, the given dataset, with elements z(%)
Require: A, the learning algorithm, seen as a function that takes a dataset as

input and outputs a learned function
Require: L, the loss function, seen as a function from a learned function f and
an example 2 €D to a scalar € R
Require: k, the number of folds
Split D into £ mutually exclusive subsets IDj, whose union is .
for i from 1 to k do
fi=A(D\D;)
for z(9) in D; do
ej = L(fi,z19)
end for
end for
Return e
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a good estimator is a function whose output is close to the true underlying @ that
generated the training data.

For now, we take the frequentist perspective on statistics. That is, we assume
that the true parameter value 0 is fixed but unknown, while the point estimate
0 is a function of the data. Since the data is drawn from a random process, any
function of the data is random. Therefore 6 is a random variable.

Point estimation can also refer to the estimation of the relationship between
input and target variables. We refer to these types of point estimates as function
estimators.

Function Estimation As we mentioned above, sometimes we are interested in
performing function estimation (or function approximation). Here we are trying to
predict a variable y given an input vector . We assume that there is a function
f(x) that describes the approximate relationship between y and x. For example,
we may assume that y = f(x) + €, where € stands for the part of y that is not
predictable from x. In function estimation, we are interested in approximating
f with a model or estimate f Function estimation is really just the same as
estimating a parameter 8; the function estimator f is simply a point estimator in
function space. The linear regression example (discussed above in Sec. 5.1.4) and
the polynomial regression example (discussed in Sec. 5.2) are both examples of
scenarios that may be interpreted either as estimating a parameter w or estimating
a function f mapping from @ to y.

We now review the most commonly studied properties of point estimators and
discuss what they tell us about these estimators.

5.4.2 Bias

The bias of an estimator is defined as:
bias(0,,) = E(6,) — 6 (5.20)

where the expectation is over the data (seen as samples from a random variable) and
6 is the true underlying value of 6 used to define the data generating distribution.
An estimator ,, is said to be unbiased if bias(8,,) = 0, which implies that ]E(B ) =

0. An estimator ém is said to be asymptotically unbiased if lim,, s~ blas(O ) =0,
which implies that limm_mo]E(OAm) =0.

Example: Bernoulli Distribution Consider a set of samples {:U(l), cey x(m)}
that are independently and identically distributed according to a Bernoulli distri-
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bution with mean 6:

P(zD;0) = 6= (1 — )", (5.21)

A common estimator for the 6 parameter of this distribution is the mean of the
training samples:

. 1 & (
0, =— 0, 22
m;x (5.22)

To determine whether this estimator is biased, we can substitute Eq. 5.22 into Eq.
5.20:

bias(f,,) = E[d,,] — 6 (5.23)
_ !71n ix(z‘)] ) (5.24)
=1
_ %iE[x(i)] 0 (5.25)
=1
m 1
_ %Z 3 (a:“') (1 — 9)“—93(”)) .y (5.26)
i=1 z(i)=0
_ % i (0)— 0 (5.27)
_9_p=0 (5.28)

Since bias(f) = 0, we say that our estimator 6 is unbiased.

Example: Gaussian Distribution Estimator of the Mean Now, consider
a set of samples {z(1), ..., (™} that are independently and identically distributed
according to a Gaussian distribution p(z (i)) = ./\/‘(a:(i); p,0?), where i € {1,...,m}.
Recall that the Gaussian probability density function is given by

(i) — ;)2
(7). 2\ 1 _1 (z 1)
p(asp,0%) = — exp ( 57— | - (5.29)

A common estimator of the Gaussian mean parameter is known as the sample
mean:

1 )
fim =— Y _ 2t (5.30)
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To determine the bias of the sample mean, we are again interested in calculating
its expectation:

bias (i) = Elfim] — p (5.31)

E [ni% ix(i)] — (5.32)
- (ﬂ% iE [x“)]) iy (5.33)

(ﬂ% Zu) — B (5.34)

L

— =0 (5.35)

Thus we find that the sample mean is an unbiased estimator of Gaussian mean
parameter.

Example: Estimators of the Variance of a Gaussian Distribution As an
example, we compare two different estimators of the variance parameter o2 of a
Gaussian distribution. We are interested in knowing if either estimator is biased.

The first estimator of o we consider is known as the sample variance:

- nil i ( - Nm) , (5.36)

where [, is the sample mean, defined above. More formally, we are interested in
computing

bias(62) = E[62] — o* (5.37)
We begin by evaluating the term E[62]:

%i (2 - ﬂmf] (5.38)
=1

1
= o? (5.39)

Returning to Eq. 5.37, we conclude that the bias of &fn is —o2/m. Therefore, the
sample variance is a biased estimator.
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The unbiased sample variance estimator

2 ﬁ . (2 - ,;,m>2 (5.40)
1=1

provides an alternative approach. As the name suggests this estimator is unbiased.
That is, we find that E[62,] = o2

i L i )2
E[2) =B | — ; (x( ) pm) ] (5.41)
- m—”j “E[67] (5.42)
m m— 1
T ( - 02> (5.43)
=02 (5.44)

We have two estimators: one is biased and the other is not. While unbiased
estimators are clearly desirable, they are not always the “best” estimators. As we
will see we often use biased estimators that possess other important properties.

5.4.3 Variance and Standard Error

Another property of the estimator that we might want to consider is how much
we expect it to vary as a function of the data sample. Just as we computed the
expectation of the estimator to determine its bias, we can compute its variance.
The variance of an estimator is simply the variance

Var(0) (5.45)

where the random variable is the training set. Alternately, the square root of the

A

variance is called the standard error, denoted SE(0).

The variance or the standard error of an estimator provides a measure of how
we would expect the estimate we compute from data to vary as we independently
resample the dataset from the underlying data generating process. Just as we
might like an estimator to exhibit low bias we would also like it to have relatively
low variance.

When we compute any statistic using a finite number of samples, our estimate
of the true underlying parameter is uncertain, in the sense that we could have
obtained other samples from the same distribution and their statistics would have
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been different. The expected degree of variation in any estimator is a source of
error that we want to quantify.

The standard error of the mean is given by

SE(fim) = Var[% Z 2] = %1 (5.46)

where 02 is the true variance of the samples . The standard error is often
estimated by using an estimate of 0. Unfortunately, neither the square root of
the sample variance nor the square root of the unbiased estimator of the variance
provide an unbiased estimate of the standard deviation. Both approaches tend
to underestimate the true standard deviation, but are still used in practice. The
square root of the unbiased estimator of the variance is less of an underestimate.
For large m, the approximation is quite reasonable.

The standard error of the mean is very useful in machine learning experiments.
We often estimate the generalization error by computing the sample mean of the
error on the test set. The number of examples in the test set determines the
accuracy of this estimate. Taking advantage of the central limit theorem, which
tells us that the mean will be approximately distributed with a normal distribution,
we can use the standard error to compute the probability that the true expectation
falls in any chosen interval. For example, the 95% confidence interval centered on
the mean is fi,, is

(ftm — L.96SE(ftm), fim + 1.96SE(fim)), (5.47)

under the normal distribution with mean fi,,, and variance SE( /4, )2 In machine
learning experiments, it is common to say that algorithm A is better than algorithm
B if the upper bound of the 95% confidence interval for the error of algorithm A is
less than the lower bound of the 95% confidence interval for the error of algorithm
B.

Example: Bernoulli Distribution We once again consider a set of samples
{z( ... (M)} drawn independently and identically from a Bernoulli distribution

(recall P(z();0) = 9;1:(1’)(1 — 9)(1_$(i))). This time we are interested in computing

the variance of the estimator 0,, = Lym 2@,

Var (ém) = Var (7’111 Z x(i)> (5.48)
i=1
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= % i Var (x(i)) (5.49)

_ % i o(1 - 0) (5.50)
=1

— %m@(l —0) (5.51)

_ %9(1 —0) (5.52)

The variance of the estimator decreases as a function of m, the number of examples
in the dataset. This is a common property of popular estimators that we will
return to when we discuss consistency (see Sec. 5.4.5).

5.4.4 Trading off Bias and Variance to Minimize Mean Squared
Error

Bias and variance measure two different sources of error in an estimator. Bias
measures the expected deviation from the true value of the function or parameter.
Variance on the other hand, provides a measure of the deviation from the expected
estimator value that any particular sampling of the data is likely to cause.

What happens when we are given a choice between two estimators, one with
more bias and one with more variance?” How do we choose between them? For
example, imagine that we are interested in approximating the function shown in
Fig. 5.2 and we are only offered the choice between a model with large bias and
one that suffers from large variance. How do we choose between them?

The most common way to negotiate this trade-off is to use cross-validation.
Empirically, cross-validation is highly successful on many real-world tasks. Alter-
natively, we can also compare the mean squared error (MSE) of the estimates:

MSE = E[(6, — 6)?] (5.53)
= Bias(6,) 2 + Var (0., ) (5.54)

The MSE measures the overall expected deviation—in a squared error sense—
between the estimator and the true value of the parameter . As is clear from
Eq. 5.54, evaluating the MSE incorporates both the bias and the variance. Desirable
estimators are those with small MSE and these are estimators that manage to keep
both their bias and variance somewhat in check.

The relationship between bias and variance is tightly linked to the machine
learning concepts of capacity, underfitting and overfitting. In the case where gen-
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Figure 5.6: As capacity increases (z-axis), bias (dotted) tends to decrease and variance
(dashed) tends to increase, yielding another U-shaped curve for generalization error (bold
curve). If we vary capacity along one axis, there is an optimal capacity, with underfitting
when the capacity is below this optimum and overfitting when it is above. This relationship

is similar to the relationship between capacity, underfitting, and overfitting, discussed in
Sec. 5.2 and Fig. 5.3.

eralization error is measured by the MSE (where bias and variance are meaningful
components of generalization error), increasing capacity tends to increase variance
and decrease bias. This is illustrated in Fig. 5.6, where we see again the U-shaped
curve of generalization error as a function of capacity.

5.4.5 Consistency

So far we have discussed the properties of various estimators for a training set of
fixed size. Usually, we are also concerned with the behavior of an estimator as the
amount of training data grows. In particular, we usually wish that, as the number
of data points m in our dataset increases, our point estimates converge to the true
value of the corresponding parameters. More formally, we would like that

A

lim 6, > 0. (5.55)

m—0o0
The symbol 2 means that the convergence is in probability, i.e. for any € > 0,
P(|6p, — 0] > € — 0 as m — oo. The condition described by Eq. 5.55 is
known as consistency. It is sometimes referred to as weak consistency, with
strong consistency referring to the almost sure convergence of @ to 0. Almost sure
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convergence of a sequence of random variables x(l), x(?)

when p(lim ;00 x(m) = x)=1.

,... to a value x occurs

Consistency ensures that the bias induced by the estimator is assured to
diminish as the number of data examples grows. However, the reverse is not
true—asymptotic unbiasedness does not imply consistency. For example, consider
estimating the mean parameter ; of a normal distribution N (z;u, %), with a
dataset consisting of m samples: {:E(l), . ,x(m)}. We could use the first sample
2 of the dataset as an unbiased estimator: § = z™). In that case, E(@m) =0
so the estimator is unbiased no matter how many data points are seen. This, of
course, implies that the estimate is asymptotically unbiased. However, this is not
a consistent estimator as it is not the case that ém — 6 as m — oo.

5.5 Maximum Likelihood Estimation

Previously, we have seen some definitions of common estimators and analyzed
their properties. But where did these estimators come from? Rather than guessing
that some function might make a good estimator and then analyzing its bias and
variance, we would like to have some principle from which we can derive specific
functions that are good estimators for different models.

The most common such principle is the maximum likelihood principle.

Consider a set of m examples X = {w(l), e a:(m)} drawn independently from
the true but unknown data generating distribution pgata (X).

Let pmodel(x;0) be a parametric family of probability distributions over the
same space indexed by 6. In other words, p ,oqc(; @) maps any configuration x
to a real number estimating the true probability pyai. ().

The maximum likelihood estimator for @ is then defined as

Oni1, = arg max Pmodel(X; 6) (5.56)
(7]
= arg gnax H Pmodel(T (i); 0) (5.57)
i=1

This product over many probabilities can be inconvenient for a variety of reasons.
For example, it is prone to numerical underflow. To obtain a more convenient
but equivalent optimization problem, we observe that taking the logarithm of the
likelihood does not change its arg max but does conveniently transform a product
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into a sum:

m
O\, = arg max Z logpmodel(:c(i); 0). (5.58)
(7] .
=1
Because the argmax does not change when we rescale the cost function, we can
divide by m to obtain a version of the criterion that is expressed as an expectation
with respect to the empirical distribution pg,;, defined by the training data:
Oy, = argemaxExwf,data 10g Pmodel(; 0). (5.59)
One way to interpret maximum likelihood estimation is to view it as minimizing
the dissimilarity between the empirical distribution pqata defined by the training
set and the model distribution, with the degree of dissimilarity between the two
measured by the KL divergence. The KL divergence is given by

DKL (ﬁdata Hpmodel) - Exwﬁdata [logpdata(w) - 1ngmodel(az)] . (560)

The term on the left is a function only of the data generating process, not the
model. This means when we train the model to minimize the KL divergence, we
need only minimize

- EXNﬁdata [logpmodel (m)] (561)
which is of course the same as the maximization in Eq. 5.59.

Minimizing this KL divergence corresponds exactly to minimizing the cross-
entropy between the distributions. Many authors use the term “cross-entropy” to
identify specifically the negative log-likelihood of a Bernoulli or softmax distribution,
but that is a misnomer. Any loss consisting of a negative log-likelihood is a cross
entropy between the empirical distribution defined by the training set and the
model. For example, mean squared error is the cross-entropy between the empirical
distribution and a Gaussian model.

We can thus see maximum likelihood as an attempt to make the model dis-
tribution match the empirical distribution pg,:,. Ideally, we would like to match
the true data generating distribution pgas., but we have no direct access to this
distribution.

While the optimal 6 is the same regardless of whether we are maximizing the
likelihood or minimizing the KL divergence, the values of the objective functions
are different. In software, we often phrase both as minimizing a cost function.
Maximum likelihood thus becomes minimization of the negative log-likelihood
(NLL), or equivalently, minimization of the cross entropy. The perspective of
maximum likelihood as minimum KL divergence becomes helpful in this case
because the KL divergence has a known minimum value of zero. The negative
log-likelihood can actually become negative when x is real-valued.
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5.5.1 Conditional Log-Likelihood and Mean Squared Error

The maximum likelihood estimator can readily be generalized to the case where
our goal is to estimate a conditional probability P(y | x;0) in order to predict y
given x. This is actually the most common situation because it forms the basis for
most supervised learning. If X represents all our inputs and Y all our observed
targets, then the conditional maximum likelihood estimator is

O\, = argmax P(Y | X;0). (5.62)
6
If the examples are assumed to be i.i.d., then this can be decomposed into

O, = arg maxz log P(y(i) | . 0). (5.63)
o =

Example: Linear Regression as Maximum Likelihood Linear regression,
introduced earlier in Sec. 5.1.4, may be justified as a maximum likelihood procedure.
Previously, we motivated linear regression as an algorithm that learns to take an
input « and produce an output value y. The mapping from @ to ¢ is chosen to
minimize mean squared error, a criterion that we introduced more or less arbitrarily.
We now revisit linear regression from the point of view of maximum likelihood
estimation. Instead of producing a single prediction ¢, we now think of the model
as producing a conditional distribution p(y | ). We can imagine that with an
infinitely large training set, we might see several training examples with the same
input value « but different values of . The goal of the learning algorithm is now to
fit the distribution p(y | «) to all of those different y values that are all compatible
with @. To derive the same linear regression algorithm we obtained before, we
define p(y | ) =N (y;9(x; w),0?). The function § (x;w) gives the prediction of
the mean of the Gaussian. In this example, we assume that the variance is fixed to
some constant o2 chosen by the user. We will see that this choice of the functional
form of p(y | «) causes the maximum likelihood estimation procedure to yield the
same learning algorithm as we developed before. Since the examples are assumed
to be i.i.d., the conditional log-likelihood (Eq. 5.63) is given by

> logp(y' | 2D; 6) (5.64)
i=1
m g 02
= —mlogo — B log(27) — ; o (5.65)
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where g)(i) is the output of the linear regression on the i-th input z® and m is the
number of the training examples. Comparing the log-likelihood with the mean
squared error,

1 - ~ (17 7
MSEtrain - E ZHy( ) — y( )||2 ; (566)
1=1

we immediately see that maximizing the log-likelihood with respect to w yields
the same estimate of the parameters w as does minimizing the mean squared error.
The two criteria have different values but the same location of the optimum. This
justifies the use of the MSE as a maximum likelihood estimation procedure. As we
will see, the maximum likelihood estimator has several desirable properties.

5.5.2 Properties of Maximum Likelihood

The main appeal of the maximum likelihood estimator is that it can be shown to
be the best estimator asymptotically, as the number of examples m — o0, in terms
of its rate of convergence as m increases.

Under appropriate conditions, maximum likelihood estimator has the property
of consistency (see Sec. 5.4.5 above), meaning that as the number of training
examples approaches infinity, the maximum likelihood estimate of a parameter
converges to the true value of the parameter. These conditions are:

e The true distribution pqata must lie within the model family pmodel (*; 0)-
Otherwise, no estimator can recover pgata -

e The true distribution pgata must correspond to exactly one value of 8. Other-
wise, maximum likelihood can recover the correct pg,t., but will not be able
to determine which value of @ was used by the data generating processing.

There are other inductive principles besides the maximum likelihood estimator,
many of which share the property of being consistent estimators. However, consis-
tent estimators can differ in their statistic efficiency, meaning that one consistent
estimator may obtain lower generalization error for a fixed number of samples m,
or equivalently, may require fewer examples to obtain a fixed level of generalization
error.

Statistical efficiency is typically studied in the parametric case (like in linear
regression) where our goal is to estimate the value of a parameter (and assuming
it is possible to identify the true parameter), not the value of a function. A way to
measure how close we are to the true parameter is by the expected mean squared
error, computing the squared difference between the estimated and true parameter
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values, where the expectation is over m training samples from the data generating
distribution. That parametric mean squared error decreases as m increases, and
for m large, the Cramér-Rao lower bound (Rao, : , ) shows that no
consistent estimator has a lower mean squared error than the maximum likelihood
estimator.

For these reasons (consistency and efficiency), maximum likelihood is often
considered the preferred estimator to use for machine learning. When the number
of examples is small enough to yield overfitting behavior, regularization strategies
such as weight decay may be used to obtain a biased version of maximum likelihood
that has less variance when training data is limited.

5.6 Bayesian Statistics

So far we have discussed frequentist statistics and approaches based on estimating a
single value of @, then making all predictions thereafter based on that one estimate.
Another approach is to consider all possible values of @ when making a prediction.
The latter is the domain of Bayesian statistics.

As discussed in Sec. 5.4.1, the frequentist perspective is that the true parameter
value 0 is fixed but unknown, while the point estimate 8 is a random variable on
account of it being a function of the dataset (which is seen as random).

The Bayesian perspective on statistics is quite different. The Bayesian uses
probability to reflect degrees of certainty of states of knowledge. The dataset is
directly observed and so is not random. On the other hand, the true parameter 0
is unknown or uncertain and thus is represented as a random variable.

Before observing the data, we represent our knowledge of @ using the prior
probability distribution, p(@) (sometimes referred to as simply “the prior”). Gen-
erally, the machine learning practitioner selects a prior distribution that is quite
broad (i.e. with high entropy) to reflect a high degree of uncertainty in the value of
0 before observing any data. For example, one might assume a priori that 0 lies
in some finite range or volume, with a uniform distribution. Many priors instead
reflect a preference for “simpler” solutions (such as smaller magnitude coefficients,
or a function that is closer to being constant).

Now consider that we have a set of data samples {x(l), - ,x(m)}. We can
recover the effect of data on our belief about @ by combining the data likelihood
p(zMW, ..., 2™ | @) with the prior via Bayes’ rule:

z W, 2™ 0)p(6)
p(a), ... z(m)

p(@ |z . gm) = p( (5.67)
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In the scenarios where Bayesian estimation is typically used, the prior begins as a
relatively uniform or Gaussian distribution with high entropy, and the observation
of the data usually causes the posterior to lose entropy and concentrate around a
few highly likely values of the parameters.

Relative to maximum likelihood estimation, Bayesian estimation offers two
important differences. First, unlike the maximum likelihood approach that makes
predictions using a point estimate of 8, the Bayesian approach is to make predictions
using a full distribution over 8. For example, after observing m examples, the
predicted distribution over the next data sample, x(mﬂ), is given by

p(a™HD | 2D gy / p(™ D | 0)p(0 | 2D, 2™ do.  (5.68)

Here each value of @ with positive probability density contributes to the prediction
of the next example, with the contribution weighted by the posterior density itself.
After having observed {z(1),... 2™ if we are still quite uncertain about the
value of 0, then this uncertainty is incorporated directly into any predictions we
might make.

In Sec. 5.4, we discussed how the frequentist approach addresses the uncertainty
in a given point estimate of @ by evaluating its variance. The variance of the
estimator is an assessment of how the estimate might change with alternative
samplings of the observed data. The Bayesian answer to the question of how to deal
with the uncertainty in the estimator is to simply integrate over it, which tends to
protect well against overfitting. This integral is of course just an application of
the laws of probability, making the Bayesian approach simple to justify, while the
frequentist machinery for constructing an estimator is based on the rather ad hoc
decision to summarize all knowledge contained in the dataset with a single point
estimate.

The second important difference between the Bayesian approach to estimation
and the maximum likelihood approach is due to the contribution of the Bayesian
prior distribution. The prior has an influence by shifting probability mass density
towards regions of the parameter space that are preferred a priori. In practice,
the prior often expresses a preference for models that are simpler or more smooth.
Critics of the Bayesian approach identify the prior as a source of subjective human
judgment impacting the predictions.

Bayesian methods typically generalize much better when limited training data
is available, but typically suffer from high computational cost when the number of
training examples is large.
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Example: Bayesian Linear Regression Here we consider the Bayesian esti-
mation approach to learning the linear regression parameters. In linear regression,
we learn a linear mapping from an input vector x € R" to predict the value of a
scalar y € R. The prediction is parametrized by the vector w € R":

j=w'. (5.69)

Given a set of m training samples (X (train) y(tmin)), we can express the prediction
of y over the entire training set as:

gy (train) _ g (brain) g (5.70)
Expressed as a Gaussian conditional distribution on ¢(t*2")  we have

p(yFraim) | X (train) ) Af(qy (brain), x(train)yy, ) (5.71)

x exp (_%(y(train) _ X (brain) )T (g (braim) _ X(train)w)> ’

(5.72)

where we follow the standard MSE formulation in assuming that the Gaussian

variance on y is one. In what follows, to reduce the notational burden, we refer to
(X(traln)’ y (tram)) as simply (X, ,y).

To determine the posterior distribution over the model parameter vector w, we
first need to specify a prior distribution. The prior should reflect our naive belief
about the value of these parameters. While it is sometimes difficult or unnatural
to express our prior beliefs in terms of the parameters of the model, in practice we
typically assume a fairly broad distribution expressing a high degree of uncertainty
about 0. For real-valued parameters it is common to use a Gaussian as a prior
distribution:

p(w) = N(w; wo, Ao) x exp (—%(w — o) Ayt (w — po)) (5.73)

where py and Agare the prior distribution mean vector and covariance matrix
respectively.!

With the prior thus specified, we can now proceed in determining the posterior
distribution over the model parameters.

p(w| X,y) xp(y | X, w)p(w) (5.74)

1 . . . .
Unless there is a reason to assume a particular covariance structure, we typically assume a
diagonal covariance matrix Ag = diag(Xy).
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x exp (—% (5 — Xw)" (y - Xw>) exp (—é(«u 1) TA w uo))

(5.75)
1
X exp (—5 (—QyTXw +w ' X Xw + wTAalw — Q“JAalw)> .
(5.76)

We now define A,,, = (XTX + Agl)_l and p,, = Ay, (XTy —|—Aalpo). Using
these new variables, we find that the posterior may be rewritten as a Gaussian
distribution:

1 1
p(w | X,y) o exp (—é(w — ) AW — ) + QMIIAZSMO (5.77)

xexp (5w = ) A w0 = ) (5.78)

All terms that do not include the parameter vector w have been omitted; they
are implied by the fact that the distribution must be normalized to integrate to 1.
Eq. 3.23 shows how to normalize a multivariate Gaussian distribution.

Examining this posterior distribution allows us to gain some intuition for the
effect of Bayesian inference. In most situations, we set gy to 0. If we set Ay = %é I
then p,,, gives the same estimate of w as does frequentist linear regression with a
weight decay penalty of aw 'w. One difference is that the Bayesian estimate is
undefined if « is set to zero—we are not allowed to begin the Bayesian learning
process with an infinitely wide prior on w. The more important difference is that
the Bayesian estimate provides a covariance matrix, showing how likely all the
different values of w are, rather than providing only the estimate piy,.

5.6.1 Maximum A Posteriori (MAP) Estimation

While the most principled approach is to make predictions using the full Bayesian
posterior distribution over the parameter 0, it is still often desirable to have a
single point estimate. One common reason for desiring a point estimate is that
most operations involving the Bayesian posterior for most interesting models are
intractable, and a point estimate offers a tractable approximation. Rather than
simply returning to the maximum likelihood estimate, we can still gain some of
the benefit of the Bayesian approach by allowing the prior to influence the choice
of the point estimate. One rational way to do this is to choose the maximum a
posteriori (MAP) point estimate. The MAP estimate chooses the point of maximal
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posterior probability (or maximal probability density in the more common case of
continuous 0):

Onap = argmax p(0 | ) = argmaxlogp(x | 0) + logp(0). (5.79)
0 0

We recognize, above on the right hand side, logp(x | 0), i.e. the standard log-
likelihood term, and log p(@), corresponding to the prior distribution.

As an example, consider a linear regression model with a Gaussian prior on the
weights w. If this prior is given by N (w;0, 5 I?), then the log-prior term in Eq.
5.79 is proportional to the familiar \w ' w weight decay penalty, plus a term that
does not depend on w and does not affect the learning process. MAP Bayesian
inference with a Gaussian prior on the weights thus corresponds to weight decay.

As with full Bayesian inference, MAP Bayesian inference has the advantage of
leveraging information that is brought by the prior and cannot be found in the
training data. This additional information helps to reduce the variance in the
MAP point estimate (in comparison to the ML estimate). However, it does so at
the price of increased bias.

Many regularized estimation strategies, such as maximum likelihood learning
regularized with weight decay, can be interpreted as making the MAP approxima-
tion to Bayesian inference. This view applies when the regularization consists of
adding an extra term to the objective function that corresponds to logp(@). Not
all regularization penalties correspond to MAP Bayesian inference. For example,
some regularizer terms may not be the logarithm of a probability distribution.
Other regularization terms depend on the data, which of course a prior probability
distribution is not allowed to do.

MAP Bayesian inference provides a straightforward way to design complicated
yet interpretable regularization terms. For example, a more complicated penalty
term can be derived by using a mixture of Gaussians, rather than a single Gaussian
distribution, as the prior ( : ).

5.7 Supervised Learning Algorithms

Recall from Sec. 5.1.3 that supervised learning algorithms are, roughly speaking,
learning algorithms that learn to associate some input with some output, given a
training set of examples of inputs @ and outputs y. In many cases the outputs
y may be difficult to collect automatically and must be provided by a human
“supervisor,” but the term still applies even when the training set targets were
collected automatically.
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5.7.1 Probabilistic Supervised Learning

Most supervised learning algorithms in this book are based on estimating a
probability distribution p(y | ). We can do this simply by using maximum
likelihood estimation to find the best parameter vector @ for a parametric family
of distributions p(y | x;8).

We have already seen that linear regression corresponds to the family
ply | 2;0) = N(y;6 'z, I). (5.80)

We can generalize linear regression to the classification scenario by defining a
different family of probability distributions. If we have two classes, class 0 and
class 1, then we need only specify the probability of one of these classes. The
probability of class 1 determines the probability of class 0, because these two values
must add up to 1.

The normal distribution over real-valued numbers that we used for linear
regression is parametrized in terms of a mean. Any value we supply for this mean
is valid. A distribution over a binary variable is slightly more complicated, because
its mean must always be between 0 and 1. One way to solve this problem is to use
the logistic sigmoid function to squash the output of the linear function into the
interval (0, 1) and interpret that value as a probability:

ply=1|x;0) =00 (0" x). (5.81)

This approach is known as logistic regression (a somewhat strange name since we
use the model for classification rather than regression).

In the case of linear regression, we were able to find the optimal weights by
solving the normal equations. Logistic regression is somewhat more difficult. There
is no closed-form solution for its optimal weights. Instead, we must search for
them by maximizing the log-likelihood. We can do this by minimizing the negative
log-likelihood (NLL) using gradient descent.

This same strategy can be applied to essentially any supervised learning problem,
by writing down a parametric family of conditional probability distributions over
the right kind of input and output variables.

5.7.2 Support Vector Machines

One of the most influential approaches to supervised learning is the support vector
machine ( , : , ). This model is similar to
logistic regression in that it is driven by a linear function w' & +b. Unlike logistic

140



CHAPTER 5. MACHINE LEARNING BASICS

regression, the support vector machine does not provide probabilities, but only
outputs a class identity. The SVM predicts that the positive class is present when
w' x + b is positive. Likewise, it predicts that the negative class is present when
w'x+0bis negative.

One key innovation associated with support vector machines is the kernel trick.
The kernel trick consists of observing that many machine learning algorithms can
be written exclusively in terms of dot products between examples. For example, it
can be shown that the linear function used by the support vector machine can be
re-written as

w'z+b=>b+ Z e T @ (5.82)
i=1

where (¥ is a training example and a is a vector of coefficients. Rewriting the
learning algorithm this way allows us to replace by the output of a given feature
function ¢(z ) and the dot product with a function k(z, (®)) = ¢(x)- ¢ (x?) called
a kernel. The - operator represents an inner product analogous to ¢(z) ' ¢(z?).
For some feature spaces, we may not use literally the vector inner product. In
some infinite dimensional spaces, we need to use other kinds of inner products, for
example, inner products based on integration rather than summation. A complete
development of these kinds of inner products is beyond the scope of this book.

After replacing dot products with kernel evaluations, we can make predictions
using the function

f@)=b+> ak(z a?). (5.83)

This function is nonlinear with respect to @, but the relationship between ¢ ()
and f(x) is linear. Also, the relationship between a and f(x) is linear. The
kernel-based function is exactly equivalent to preprocessing the data by applying
¢(x) to all inputs, then learning a linear model in the new transformed space.

The kernel trick is powerful for two reasons. First, it allows us to learn models
that are nonlinear as a function of z using convex optimization techniques that are
guaranteed to converge efficiently. This is possible because we consider ¢ fixed and
optimize only «, i.e., the optimization algorithm can view the decision function
as being linear in a different space. Second, the kernel function k£ often admits
an implementation that is significantly more computational efficient than naively
constructing two ¢(x) vectors and explicitly taking their dot product.

In some cases, ¢(x) can even be infinite dimensional, which would result in
an infinite computational cost for the naive, explicit approach. In many cases,
k(z,z') is a nonlinear, tractable function of & even when ¢ (z) is intractable. As
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an example of an infinite-dimensional feature space with a tractable kernel, we
construct a feature mapping ¢ (x) over the non-negative integers x. Suppose that
this mapping returns a vector containing x ones followed by infinitely many zeros.
We can write a kernel function & (z, :L'(i)) = min(z, ZC(i)) that is exactly equivalent
to the corresponding infinite-dimensional dot product.

The most commonly used kernel is the Gaussian kernel
k(u,v) = N(u — v;0,0%I) (5.84)

where N(x; u, X) is the standard normal density. This kernel is also known as
the radial basis function (RBF) kernel, because its value decreases along lines in
v space radiating outward from w. The Gaussian kernel corresponds to a dot
product in an infinite-dimensional space, but the derivation of this space is less
straightforward than in our example of the min kernel over the integers.

We can think of the Gaussian kernel as performing a kind of template matching.
A training example & associated with training label y becomes a template for class
y. When a test point ' is near x according to Euclidean distance, the Gaussian
kernel has a large response, indicating that x’ is very similar to the = template.
The model then puts a large weight on the associated training label y. Overall,
the prediction will combine many such training labels weighted by the similarity
of the corresponding training examples.

Support vector machines are not the only algorithm that can be enhanced
using the kernel trick. Many other linear models can be enhanced in this way. The
category of algorithms that employ the kernel trick is known as kernel machines
or kernel methods ( , : , ).

A major drawback to kernel machines is that the cost of evaluating the decision
function is linear in the number of training examples, because the i-th example
contributes a term o k(z, () to the decision function. Support vector machines
are able to mitigate this by learning an a vector that contains mostly zeros.
Classifying a new example then requires evaluating the kernel function only for
the training examples that have non-zero a;. These training examples are known
as support vectors.

Kernel machines also suffer from a high computational cost of training when
the dataset is large. We will revisit this idea in Sec. 5.9. Kernel machines with
generic kernels struggle to generalize well. We will explain why in Sec. 5.11. The
modern incarnation of deep learning was designed to overcome these limitations of
kernel machines. The current deep learning renaissance began when
( ) demonstrated that a neural network could outperform the RBF kernel SVM
on the MNIST benchmark.
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5.7.3 Other Simple Supervised Learning Algorithms

We have already briefly encountered another non-probabilistic supervised learning
algorithm, nearest neighbor regression. More generally, k-nearest neighbors is
a family of techniques that can be used for classification or regression. As a
non-parametric learning algorithm, k-nearest neighbors is not restricted to a fixed
number of parameters. We usually think of the k-nearest neighbors algorithm
as not having any parameters, but rather implementing a simple function of the
training data. In fact, there is not even really a training stage or learning process.
Instead, at test time, when we want to produce an output y for a new test input =,
we find the k-nearest neighbors to @ in the training data X. We then return the
average of the corresponding y values in the training set. This works for essentially
any kind of supervised learning where we can define an average over y values. In
the case of classification, we can average over one-hot code vectors ¢ with ¢, =1
and c¢; = 0 for all other values of i. We can then interpret the average over these
one-hot codes as giving a probability distribution over classes. As a non-parametric
learning algorithm, k-nearest neighbor can achieve very high capacity. For example,
suppose we have a multiclass classification task and measure performance with 0-1
loss. In this setting, 1-nearest neighbor converges to double the Bayes error as the
number of training examples approaches infinity. The error in excess of the Bayes
error results from choosing a single neighbor by breaking ties between equally
distant neighbors randomly. When there is infinite training data, all test points @
will have infinitely many training set neighbors at distance zero. If we allow the
algorithm to use all of these neighbors to vote, rather than randomly choosing one
of them, the procedure converges to the Bayes error rate. The high capacity of
k-nearest neighbors allows it to obtain high accuracy given a large training set.
However, it does so at high computational cost, and it may generalize very badly
given a small, finite training set. One weakness of k-nearest neighbors is that it
cannot learn that one feature is more discriminative than another. For example,
imagine we have a regression task with € R0 drawn from an isotropic Gaussian
distribution, but only a single variable x; is relevant to the output. Suppose
further that this feature simply encodes the output directly, i.e. that y =z in all
cases. Nearest neighbor regression will not be able to detect this simple pattern.
The nearest neighbor of most points @ will be determined by the large number of
features o through x199, not by the lone feature x;. Thus the output on small
training sets will essentially be random.
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Figure 5.7: Diagrams describing how a decision tree works. (Top) Each node of the tree
chooses to send the input example to the child node on the left (0) or or the child node on
the right (1). Internal nodes are drawn as circles and leaf nodes as squares. Each node is
displayed with a binary string identifier corresponding to its position in the tree, obtained
by appending a bit to its parent identifier (0=choose left or top, 1=choose right or bottom).
(Bottom) The tree divides space into regions. The 2D plane shows how a decision tree
might divide R?. The nodes of the tree are plotted in this plane, with each internal node
drawn along the dividing line it uses to categorize examples, and leaf nodes drawn in the
center of the region of examples they receive. The result is a piecewise-constant function,
with one piece per leaf. Each leaf requires at least one training example to define, so it is
not possible for the decision tree to learn a function that has more local maxima than the
number of training examples.
144



CHAPTER 5. MACHINE LEARNING BASICS

Another type of learning algorithm that also breaks the input space into regions
and has separate parameters for each region is the decision tree ( ,

) and its many variants. As shown in Fig. 5.7, each node of the decision tree
is associated with a region in the input space, and internal nodes break that region
into one sub-region for each child of the node (typically using an axis-aligned
cut). Space is thus sub-divided into non-overlapping regions, with a one-to-one
correspondence between leaf nodes and input regions. Each leaf node usually maps
every point in its input region to the same output. Decision trees are usually
trained with specialized algorithms that are beyond the scope of this book. The
learning algorithm can be considered non-parametric if it is allowed to learn a tree
of arbitrary size, though decision trees are usually regularized with size constraints
that turn them into parametric models in practice. Decision trees as they are
typically used, with axis-aligned splits and constant outputs within each node,
struggle to solve some problems that are easy even for logistic regression. For
example, if we have a two-class problem and the positive class occurs wherever
xro > x1, the decision boundary is not axis-aligned. The decision tree will thus
need to approximate the decision boundary with many nodes, implementing a step
function that constantly walks back and forth across the true decision function
with axis-aligned steps.

As we have seen, nearest neighbor predictors and decision trees have many
limitations. Nonetheless, they are useful learning algorithms when computational
resources are constrained. We can also build intuition for more sophisticated
learning algorithms by thinking about the similarities and differences between
sophisticated algorithms and A-NN or decision tree baselines.

See ( ) ( ), ( ) or other machine
learning textbooks for more material on traditional supervised learning algorithms.

5.8 Unsupervised Learning Algorithms

Recall from Sec. 5.1.3 that unsupervised algorithms are those that experience only
“features” but not a supervision signal. The distinction between supervised and
unsupervised algorithms is not formally and rigidly defined because there is no
objective test for distinguishing whether a value is a feature or a target provided by
a supervisor. Informally, unsupervised learning refers to most attempts to extract
information from a distribution that do not require human labor to annotate
examples. The term is usually associated with density estimation, learning to
draw samples from a distribution, learning to denoise data from some distribution,
finding a manifold that the data lies near, or clustering the data into groups of
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related examples.

A classic unsupervised learning task is to find the “best” representation of the
data. By ‘best’ we can mean different things, but generally speaking we are looking
for a representation that preserves as much information about @ as possible while
obeying some penalty or constraint aimed at keeping the representation simpler or
more accessible than x itself.

There are multiple ways of defining a simpler representation. Three of the
most common include lower dimensional representations, sparse representations
and independent representations. Low-dimensional representations attempt to
compress as much information about x as possible in a smaller representation.
Sparse representations ( , ; , ;

, ) embed the dataset into a representation whose entries are
mostly zeroes for most inputs. The use of sparse representations typically requires
increasing the dimensionality of the representation, so that the representation
becoming mostly zeroes does not discard too much information. This results in an
overall structure of the representation that tends to distribute data along the axes
of the representation space. Independent representations attempt to disentangle
the sources of variation underlying the data distribution such that the dimensions
of the representation are statistically independent.

Of course these three criteria are certainly not mutually exclusive. Low-
dimensional representations often yield elements that have fewer or weaker de-
pendencies than the original high-dimensional data. This is because one way to
reduce the size of a representation is to find and remove redundancies. Identifying
and removing more redundancy allows the dimensionality reduction algorithm to
achieve more compression while discarding less information.

The notion of representation is one of the central themes of deep learning and
therefore one of the central themes in this book. In this section, we develop some
simple examples of representation learning algorithms. Together, these example
algorithms show how to operationalize all three of the criteria above. Most of the
remaining chapters introduce additional representation learning algorithms that
develop these criteria in different ways or introduce other criteria.

5.8.1 Principal Components Analysis

In Sec. 2.12, we saw that the principal components analysis algorithm provides a
means of compressing data. We can also view PCA as an unsupervised learning
algorithm that learns a representation of data. This representation is based on
two of the criteria for a simple representation described above. PCA learns a
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Figure 5.8: PCA learns a linear projection that aligns the direction of greatest variance
with the axes of the new space. (Left) The original data consists of samples of . In this
space, the variance might occur along directions that are not axis-aligned. (Right) The
transformed data z= x "W now varies most along the axis z;. The direction of second
most variance is now along z.

representation that has lower dimensionality than the original input. It also learns
a representation whose elements have no linear correlation with each other. This
is a first step toward the criterion of learning representations whose elements are
statistically independent. To achieve full independence, a representation learning
algorithm must also remove the nonlinear relationships between variables.

PCA learns an orthogonal, linear transformation of the data that projects an
input « to a representation z as shown in Fig. 5.8. In Sec. 2.12, we saw that we
could learn a one-dimensional representation that best reconstructs the original
data (in the sense of mean squared error) and that this representation actually
corresponds to the first principal component of the data. Thus we can use PCA
as a simple and effective dimensionality reduction method that preserves as much
of the information in the data as possible (again, as measured by least-squares
reconstruction error). In the following, we will study how the PCA representation
decorrelates the original data representation X.

Let us consider the m x n-dimensional design matrix X. We will assume that
the data has a mean of zero, E[x] = 0. If this is not the case, the data can easily
be centered by subtracting the mean from all examples in a preprocessing step.

The unbiased sample covariance matrix associated with X is given by:

1
Var[z] = mXTX. (5.85)
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PCA finds a representation (through linear transformation) z = ' W where
Var[z]| is diagonal.

In Sec. 2.12, we saw that the principal components of a design matrix X are
given by the eigenvectors of X ' X. From this view,

X'X =WAW', (5.86)

In this section, we exploit an alternative derivation of the principal components. The
principal components may also be obtained via the singular value decomposition.
Specifically, they are the right singular vectors of X. To see this, let W be the
right singular vectors in the decomposition X = UXW . We then recover the
original eigenvector equation with W as the eigenvector basis:

.
XTX = (UEWT> UsSwT = ws2w'. (5.87)

The SVD is helpful to show that PCA results in a diagonal Var[z]. Using the
SVD of X, we can express the variance of X as:

1

Var[z] = m—_leX (5.88)
1
— —1(U2WT)TUZWT (5.89)
m j—
- ! wesvuswT (5.90)
m—1
1
- ——WXW', (5.91)
m—1

where we use the fact that UT U = I because the U matrix of the singular value
definition is defined to be orthonormal. This shows that if we take z= &' W, we
can ensure that the covariance of z is diagonal as required:

1
Var[z] = —12TZ (5.92)
m R
1
= — W'X'XW (5.93)
m—1
1
- — _w'wz*w'w (5.94)
m—1
1
=2 (5.95)
m—1

where this time we use the fact that W' W = I, again from the definition of the
SVD.
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The above analysis shows that when we project the data « to z, via the linear
transformation W, the resulting representation has a diagonal covariance matrix
(as given by ¥?) which immediately implies that the individual elements of z are
mutually uncorrelated.

This ability of PCA to transform data into a representation where the elements
are mutually uncorrelated is a very important property of PCA. It is a simple
example of a representation that attempt to disentangle the unknown factors
of variation underlying the data. In the case of PCA, this disentangling takes
the form of finding a rotation of the input space (described by W) that aligns the
principal axes of variance with the basis of the new representation space associated
with z.

While correlation is an important category of dependency between elements of
the data, we are also interested in learning representations that disentangle more
complicated forms of feature dependencies. For this, we will need more than what
can be done with a simple linear transformation.

5.8.2 k-means Clustering

Another example of a simple representation learning algorithm is k-means clustering.
The k-means clustering algorithm divides the training set into k different clusters
of examples that are near each other. We can thus think of the algorithm as
providing a k-dimensional one-hot code vector h representing an input x. If
belongs to cluster 7, then h; = 1 and all other entries of the representation h are
Zero.

The one-hot code provided by kmeans clustering is an example of a sparse
representation, because the majority of its entries are zero for every input. Later,
we will develop other algorithms that learn more flexible sparse representations,
where more than one entry can be non-zero for each input . One-hot codes
are an extreme example of sparse representations that lose many of the benefits
of a distributed representation. The one-hot code still confers some statistical
advantages (it naturally conveys the idea that all examples in the same cluster are
similar to each other) and it confers the computational advantage that the entire
representation may be captured by a single integer.

The k-means algorithm works by initializing k different centroids {p ™), ..., u(®}
to different values, then alternating between two different steps until convergence.
In one step, each training example is assigned to cluster ¢, where ¢ is the index of
the nearest centroid (9. In the other step, each centroid p(? is updated to the
mean of all training examples (/) assigned to cluster 1.
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One difficulty pertaining to clustering is that the clustering problem is inherently
ill-posed, in the sense that there is no single criterion that measures how well a
clustering of the data corresponds to the real world. We can measure properties of
the clustering such as the average Euclidean distance from a cluster centroid to the
members of the cluster. This allows us to tell how well we are able to reconstruct
the training data from the cluster assignments. We do not know how well the
cluster assignments correspond to properties of the real world. Moreover, there
may be many different clusterings that all correspond well to some property of
the real world. We may hope to find a clustering that relates to one feature but
obtain a different, equally valid clustering that is not relevant to our task. For
example, suppose that we run two clustering algorithms on a dataset consisting of
images of red trucks, images of red cars, images of gray trucks, and images of gray
cars. If we ask each clustering algorithm to find two clusters, one algorithm may
find a cluster of cars and a cluster of trucks, while another may find a cluster of
red vehicles and a cluster of gray vehicles. Suppose we also run a third clustering
algorithm, which is allowed to determine the number of clusters. This may assign
the examples to four clusters, red cars, red trucks, gray cars, and gray trucks. This
new clustering now at least captures information about both attributes, but it has
lost information about similarity. Red cars are in a different cluster from gray
cars, just as they are in a different cluster from gray trucks. The output of the
clustering algorithm does not tell us that red cars are more similar to gray cars
than they are to gray trucks. They are different from both things, and that is all
we know.

These issues illustrate some of the reasons that we may prefer a distributed
representation to a one-hot representation. A distributed representation could have
two attributes for each vehicle—one representing its color and one representing
whether it is a car or a truck. It is still not entirely clear what the optimal
distributed representation is (how can the learning algorithm know whether the
two attributes we are interested in are color and car-versus-truck rather than
manufacturer and age?) but having many attributes reduces the burden on the
algorithm to guess which single attribute we care about, and allows us to measure
similarity between objects in a fine-grained way by comparing many attributes
instead of just testing whether one attribute matches.

5.9 Stochastic Gradient Descent

Nearly all of deep learning is powered by one very important algorithm: stochastic
gradient descent or SGD. Stochastic gradient descent is an extension of the gradient
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descent algorithm introduced in Sec. 4.3.

A recurring problem in machine learning is that large training sets are necessary
for good generalization, but large training sets are also more computationally
expensive.

The cost function used by a machine learning algorithm often decomposes as a
sum over training examples of some per-example loss function. For example, the
negative conditional log-likelihood of the training data can be written as

1 & N
J(e) = Exany‘HataL(w7 y7 0) = ?’L Z L(w(l) ) y(l) I 0) (596)
=1

where L is the per-example loss L(zx,y,0) = —logp(y | =;0).

For these additive cost functions, gradient descent requires computing
Ve J(6) = 1 i VoL(zV, 4" ). (5.97)
m Z:1 ) )

The computational cost of this operation is O(m). As the training set size grows to
billions of examples, the time to take a single gradient step becomes prohibitively
long.

The insight of stochastic gradient descent is that the gradient is an expectation.
The expectation may be approximately estimated using a small set of samples.
Specifically, on each step of the algorithm, we can sample a minibatch of examples
B = {z(),..., ()} drawn uniformly from the training set. The minibatch size
m' is typically chosen to be a relatively small number of examples, ranging from
1 to a few hundred. Crucially, m/ is usually held fixed as the training set size m
grows. We may fit a training set with billions of examples using updates computed
on only a hundred examples.

The estimate of the gradient is formed as

1
g:ﬁ

m/

Vo) L,y 0). (5.98)
i=1

using examples from the minibatch B. The stochastic gradient descent algorithm

then follows the estimated gradient downhill:

0+ 0 —cg, (5.99)

where € is the learning rate.
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Gradient descent in general has often been regarded as slow or unreliable. In
the past, the application of gradient descent to non-convex optimization problems
was regarded as foolhardy or unprincipled. Today, we know that the machine
learning models described in Part II work very well when trained with gradient
descent. The optimization algorithm may not be guaranteed to arrive at even a
local minimum in a reasonable amount of time, but it often finds a very low value
of the cost function quickly enough to be useful.

Stochastic gradient descent has many important uses outside the context of
deep learning. It is the main way to train large linear models on very large
datasets. For a fixed model size, the cost per SGD update does not depend on the
training set size m. In practice, we often use a larger model as the training set size
increases, but we are not forced to do so. The number of updates required to reach
convergence usually increases with training set size. However, as m approaches
infinity, the model will eventually converge to its best possible test error before
SGD has sampled every example in the training set. Increasing m further will not
extend the amount of training time needed to reach the model’s best possible test
error. From this point of view, one can argue that the asymptotic cost of training
a model with SGD is O(1) as a function of m.

Prior to the advent of deep learning, the main way to learn nonlinear models
was to use the kernel trick in combination with a linear model. Many kernel learning
algorithms require constructing an m X m matrix G; ; = k(x®,20)). Constructing
this matrix has computational cost O(m?), which is clearly undesirable for datasets
with billions of examples. In academia, starting in 2006, deep learning was
initially interesting because it was able to generalize to new examples better
than competing algorithms when trained on medium-sized datasets with tens of
thousands of examples. Soon after, deep learning garnered additional interest in
industry, because it provided a scalable way of training nonlinear models on large
datasets.

Stochastic gradient descent and many enhancements to it are described further
in Chapter 8.

5.10 Building a Machine Learning Algorithm

Nearly all deep learning algorithms can be described as particular instances of
a fairly simple recipe: combine a specification of a dataset, a cost function, an
optimization procedure and a model.

For example, the linear regression algorithm combines a dataset consisting of
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X and y, the cost function

J(w,b) = —Ex ypiaie 108 Pmodel (¥ | ), (5.100)

the model specification pmodel(y | ) = N (y; & "w + b, 1), and, in most cases, the
optimization algorithm defined by solving for where the gradient of the cost is zero
using the normal equations.

By realizing that we can replace any of these components mostly independently
from the others, we can obtain a very wide variety of algorithms.

The cost function typically includes at least one term that causes the learning
process to perform statistical estimation. The most common cost function is the
negative log-likelihood, so that minimizing the cost function causes maximum
likelihood estimation.

The cost function may also include additional terms, such as regularization
terms. For example, we can add weight decay to the linear regression cost function
to obtain

T(w,5) = Al[w|3 ~ Exypyn 108 Poaar(y | @). (5.101)
This still allows closed-form optimization.

If we change the model to be nonlinear, then most cost functions can no longer
be optimized in closed form. This requires us to choose an iterative numerical
optimization procedure, such as gradient descent.

The recipe for constructing a learning algorithm by combining models, costs, and
optimization algorithms supports both supervised and unsupervised learning. The
linear regression example shows how to support supervised learning. Unsupervised
learning can be supported by defining a dataset that contains only X and providing
an appropriate unsupervised cost and model. For example, we can obtain the first
PCA vector by specifying that our loss function is

J(w) = Exmpppo |l — r(z;w)] 3 (5.102)

while our model is defined to have w with norm one and reconstruction function

r(z) = w'zw.

In some cases, the cost function may be a function that we cannot actually
evaluate, for computational reasons. In these cases, we can still approximately
minimize it using iterative numerical optimization so long as we have some way of
approximating its gradients.

Most machine learning algorithms make use of this recipe, though it may not
immediately be obvious. If a machine learning algorithm seems especially unique or
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hand-designed, it can usually be understood as using a special-case optimizer. Some
models such as decision trees or k-means require special-case optimizers because
their cost functions have flat regions that make them inappropriate for minimization
by gradient-based optimizers. Recognizing that most machine learning algorithms
can be described using this recipe helps to see the different algorithms as part of a
taxonomy of methods for doing related tasks that work for similar reasons, rather
than as a long list of algorithms that each have separate justifications.

5.11 Challenges Motivating Deep Learning

The simple machine learning algorithms described in this chapter work very well on
a wide variety of important problems. However, they have not succeeded in solving
the central problems in AI, such as recognizing speech or recognizing objects.

The development of deep learning was motivated in part by the failure of
traditional algorithms to generalize well on such Al tasks.

This section is about how the challenge of generalizing to new examples becomes
exponentially more difficult when working with high-dimensional data, and how
the mechanisms used to achieve generalization in traditional machine learning
are insufficient to learn complicated functions in high-dimensional spaces. Such
spaces also often impose high computational costs. Deep learning was designed to
overcome these and other obstacles.

5.11.1 The Curse of Dimensionality

Many machine learning problems become exceedingly difficult when the number
of dimensions in the data is high. This phenomenon is known as the curse
of dimensionality. Of particular concern is that the number of possible distinct
configurations of a set of variables increases exponentially as the number of variables
increases.
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Figure 5.9: As the number of relevant dimensions of the data increases (from left to
right), the number of configurations of interest may grow exponentially. (Left) In this
one-dimensional example, we have one variable for which we only care to distinguish 10
regions of interest. With enough examples falling within each of these regions (each region
corresponds to a cell in the illustration), learning algorithms can easily generalize correctly.
A straightforward way to generalize is to estimate the value of the target function within
each region (and possibly interpolate between neighboring regions). (Center) With 2
dimensions (center) it is more difficult to distinguish 10 different values of each variable.
We need to keep track of up to 10x10=100 regions, and we need at least that many
examples to cover all those regions. (Right) With 3 dimensions this grows to 16 = 1000

regions and at least that many examples. Ford dimensions and v values to be distinguished

along each axis, we seem to need O(v?) regions and examples. This is an instance of the
curse of dimensionality. Figure graciously provided by Nicolas Chapados.

The curse of dimensionality arises in many places in computer science, and
especially so in machine learning.

One challenge posed by the curse of dimensionality is a statistical challenge.
As illustrated in Fig. 5.9, a statistical challenge arises because the number of
possible configurations of @ is much larger than the number of training examples.
To understand the issue, let us consider that the input space is organized into a
grid, like in the figure. In low dimensions we can describe this space with a low
number of grid cells that are mostly occupied by the data. When generalizing to a
new data point, we can usually tell what to do simply by inspecting the training
examples that lie in the same cell as the new input. For example, if estimating
the probability density at some point &, we can just return the number of training
examples in the same unit volume cell as @, divided by the total number of training
examples. If we wish to classify an example, we can return the most common class
of training examples in the same cell. If we are doing regression we can average
the target values observed over the examples in that cell. But what about the
cells for which we have seen no example? Because in high-dimensional spaces the
number of configurations is going to be huge, much larger than our number of
examples, most configurations will have no training example associated with it.
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How could we possibly say something meaningful about these new configurations?
Many traditional machine learning algorithms simply assume that the output at a
new point should be approximately the same as the output at the nearest training
point.

5.11.2 Local Constancy and Smoothness Regularization

In order to generalize well, machine learning algorithms need to be guided by prior
beliefs about what kind of function they should learn. Previously, we have seen
these priors incorporated as explicit beliefs in the form of probability distributions
over parameters of the model. More informally, we may also discuss prior beliefs as
directly influencing the function itself and only indirectly acting on the parameters
via their effect on the function. Additionally, we informally discuss prior beliefs as
being expressed implicitly, by choosing algorithms that are biased toward choosing
some class of functions over another, even though these biases may not be expressed
(or even possible to express) in terms of a probability distribution representing our
degree of belief in various functions.

Among the most widely used of these implicit “priors” is the smoothness prior
or local constancy prior. This prior states that the function we learn should not
change very much within a small region.

Many simpler algorithms rely exclusively on this prior to generalize well, and
as a result they fail to scale to the statistical challenges involved in solving Al-
level tasks. Throughout this book, we will describe how deep learning introduces
additional (explicit and implicit) priors in order to reduce the generalization
error on sophisticated tasks. Here, we explain why the smoothness prior alone is
insufficient for these tasks.

There are many different ways to implicitly or explicitly express a prior belief
that the learned function should be smooth or locally constant. All of these different
methods are designed to encourage the learning process to learn a function f* that
satisfies the condition

[(@) = fi@+e) (5.103)

for most configurations & and small change e In other words, if we know a good
answer for an input @ (for example, if @ is a labeled training example) then that
answer is probably good in the neighborhood of . If we have several good answers
in some neighborhood we would combine them (by some form of averaging or
interpolation) to produce an answer that agrees with as many of them as much as
possible.

An extreme example of the local constancy approach is the k-nearest neighbors
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family of learning algorithms. These predictors are literally constant over each
region containing all the points  that have the same set of k nearest neighbors in
the training set. For k = 1, the number of distinguishable regions cannot be more
than the number of training examples.

While the k-nearest neighbors algorithm copies the output from nearby training
examples, most kernel machines interpolate between training set outputs associated
with nearby training examples. An important class of kernels is the family of local
kernels where k(u,v) is large when w = v and decreases as u and v grow farther
apart from each other. A local kernel can be thought of as a similarity function
that performs template matching, by measuring how closely a test example &
resembles each training example z®. Much of the modern motivation for deep
learning is derived from studying the limitations of local template matching and
how deep models are able to succeed in cases where local template matching fails

( : )-

Decision trees also suffer from the limitations of exclusively smoothness-based
learning because they break the input space into as many regions as there are
leaves and use a separate parameter (or sometimes many parameters for extensions
of decision trees) in each region. If the target function requires a tree with at
least n leaves to be represented accurately, then at least n training examples are
required to fit the tree. A multiple of n is needed to achieve some level of statistical
confidence in the predicted output.

In general, to distinguish O (k) regions in input space, all of these methods
require O(k) examples. Typically there are O (k) parameters, with O (1) parameters
associated with each of the O(k) regions. The case of a nearest neighbor scenario,
where each training example can be used to define at most one region, is illustrated
in Fig. 5.10.

Is there a way to represent a complex function that has many more regions
to be distinguished than the number of training examples? Clearly, assuming
only smoothness of the underlying function will not allow a learner to do that.
For example, imagine that the target function is a kind of checkerboard. A
checkerboard contains many variations but there is a simple structure to them.
Imagine what happens when the number of training examples is substantially
smaller than the number of black and white squares on the checkerboard. Based
on only local generalization and the smoothness or local constancy prior, we would
be guaranteed to correctly guess the color of a new point if it lies within the same
checkerboard square as a training example. There is no guarantee that the learner
could correctly extend the checkerboard pattern to points lying in squares that do
not contain training examples. With this prior alone, the only information that an
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Figure 5.10: Illustration of how the nearest neighbor algorithm breaks up the input space
into regions. An example (represented here by a circle) within each region defines the
region boundary (represented here by the lines). They value associated with each example
defines what the output should be for all points within the corresponding region. The
regions defined by nearest neighbor matching form a geometric pattern called a Voronoi
diagram. The number of these contiguous regions cannot grow faster than the number
of training examples. While this figure illustrates the behavior of the nearest neighbor
algorithm specifically, other machine learning algorithms that rely exclusively on the
local smoothness prior for generalization exhibit similar behaviors: each training example
only informs the learner about how to generalize in some neighborhood immediately
surrounding that example.
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example tells us is the color of its square, and the only way to get the colors of the
entire checkerboard right is to cover each of its cells with at least one example.

The smoothness assumption and the associated non-parametric learning algo-
rithms work extremely well so long as there are enough examples for the learning
algorithm to observe high points on most peaks and low points on most valleys
of the true underlying function to be learned. This is generally true when the
function to be learned is smooth enough and varies in few enough dimensions.
In high dimensions, even a very smooth function can change smoothly but in a
different way along each dimension. If the function additionally behaves differently
in different regions, it can become extremely complicated to describe with a set of
training examples. If the function is complicated (we want to distinguish a huge
number of regions compared to the number of examples), is there any hope to
generalize well?

The answer to both of these questions is yes. The key insight is that a very
large number of regions, e.g., O(2%), can be defined with O (k) examples, so long
as we introduce some dependencies between the regions via additional assumptions
about the underlying data generating distribution. In this way, we can actually
generalize non-locally ( , ; , ). Many
different deep learning algorithms provide implicit or explicit assumptions that are
reasonable for a broad range of Al tasks in order to capture these advantages.

Other approaches to machine learning often make stronger, task-specific as-
sumptions. For example, we could easily solve the checkerboard task by providing
the assumption that the target function is periodic. Usually we do not include such
strong, task-specific assumptions into neural networks so that they can generalize
to a much wider variety of structures. Al tasks have structure that is much too
complex to be limited to simple, manually specified properties such as periodicity,
so we want learning algorithms that embody more general-purpose assumptions.
The core idea in deep learning is that we assume that the data was generated
by the composition of factors or features, potentially at multiple levels in a
hierarchy. Many other similarly generic assumptions can further improve deep
learning algorithms. These apparently mild assumptions allow an exponential gain
in the relationship between the number of examples and the number of regions
that can be distinguished. These exponential gains are described more precisely in
Sec. 6.4.1, Sec. 15.4, and Sec. 15.5. The exponential advantages conferred by the
use of deep, distributed representations counter the exponential challenges posed
by the curse of dimensionality.
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5.11.3 Manifold Learning

An important concept underlying many ideas in machine learning is that of a
manifold.

A manifold is a connected region. Mathematically, it is a set of points, associated
with a neighborhood around each point. From any given point, the manifold locally
appears to be a Euclidean space. In everyday life, we experience the surface of the
world as a 2-D plane, but it is in fact a spherical manifold in 3-D space.

The definition of a neighborhood surrounding each point implies the existence
of transformations that can be applied to move on the manifold from one position
to a neighboring one. In the example of the world’s surface as a manifold, one can
walk north, south, east, or west.

Although there is a formal mathematical meaning to the term “manifold,”
in machine learning it tends to be used more loosely to designate a connected
set of points that can be approximated well by considering only a small number
of degrees of freedom, or dimensions, embedded in a higher-dimensional space.
Each dimension corresponds to a local direction of variation. See Fig. 5.11 for an
example of training data lying near a one-dimensional manifold embedded in two-
dimensional space. In the context of machine learning, we allow the dimensionality
of the manifold to vary from one point to another. This often happens when a
manifold intersects itself. For example, a figure eight is a manifold that has a single
dimension in most places but two dimensions at the intersection at the center.
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Figure 5.11: Data sampled from a distribution in a two-dimensional space that is actually
concentrated near a one-dimensional manifold, like a twisted string. The solid line indicates
the underlying manifold that the learner should infer.
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Many machine learning problems seem hopeless if we expect the machine
learning algorithm to learn functions with interesting variations across all of
R*. Manifold learning algorithms surmount this obstacle by assuming that most
of R™ consists of invalid inputs, and that interesting inputs occur only along
a collection of manifolds containing a small subset of points, with interesting
variations in the output of the learned function occurring only along directions
that lie on the manifold, or with interesting variations happening only when we
move from one manifold to another. Manifold learning was introduced in the case
of continuous-valued data and the unsupervised learning setting, although this
probability concentration idea can be generalized to both discrete data and the
supervised learning setting: the key assumption remains that probability mass is
highly concentrated.

The assumption that the data lies along a low-dimensional manifold may not
always be correct or useful. We argue that in the context of Al tasks, such as
those that involve processing images, sounds, or text, the manifold assumption is
at least approximately correct. The evidence in favor of this assumption consists
of two categories of observations.

The first observation in favor of the manifold hypothesis is that the probability
distribution over images, text strings, and sounds that occur in real life is highly
concentrated. Uniform noise essentially never resembles structured inputs from
these domains. Fig. 5.12 shows how, instead, uniformly sampled points look like the
patterns of static that appear on analog television sets when no signal is available.
Similarly, if you generate a document by picking letters uniformly at random, what
is the probability that you will get a meaningful English-language text? Almost
zero, again, because most of the long sequences of letters do not correspond to a
natural language sequence: the distribution of natural language sequences occupies
a very small volume in the total space of sequences of letters.
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Figure 5.12: Sampling images uniformly at random (by randomly picking each pixel
according to a uniform distribution) gives rise to noisy images. Although there is a non-
zero probability to generate an image of a face or any other object frequently encountered
in Al applications, we never actually observe this happening in practice. This suggests
that the images encountered in Al applications occupy a negligible proportion of the

volume of image space.

Of course, concentrated probability distributions are not sufficient to show
that the data lies on a reasonably small number of manifolds. We must also
establish that the examples we encounter are connected to each other by other
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examples, with each example surrounded by other highly similar examples that
may be reached by applying transformations to traverse the manifold. The second
argument in favor of the manifold hypothesis is that we can also imagine such
neighborhoods and transformations, at least informally. In the case of images, we
can certainly think of many possible transformations that allow us to trace out a
manifold in image space: we can gradually dim or brighten the lights, gradually
move or rotate objects in the image, gradually alter the colors on the surfaces of
objects, etc. It remains likely that there are multiple manifolds involved in most
applications. For example, the manifold of images of human faces may not be
connected to the manifold of images of cat faces.

These thought experiments supporting the manifold hypotheses convey some in-
tuitive reasons supporting it. More rigorous experiments ( , ;
, ) clearly support the hypothesis for a large class of datasets of
interest in Al

When the data lies on a low-dimensional manifold, it can be most natural
for machine learning algorithms to represent the data in terms of coordinates on
the manifold, rather than in terms of coordinates in R". In everyday life, we can
think of roads as 1-D manifolds embedded in 3-D space. We give directions to
specific addresses in terms of address numbers along these 1-D roads, not in terms
of coordinates in 3-D space. Extracting these manifold coordinates is challenging,
but holds the promise to improve many machine learning algorithms. This general
principle is applied in many contexts. Fig. 5.13 shows the manifold structure of a
dataset consisting of faces. By the end of this book, we will have developed the
methods necessary to learn such a manifold structure. In Fig. 20.6, we will see
how a machine learning algorithm can successfully accomplish this goal.

This concludes Part I, which has provided the basic concepts in mathematics
and machine learning which are employed throughout the remaining parts of the
book. You are now prepared to embark upon your study of deep learning.
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Figure 5.13: Training examples from the QMUL Multiview Face Dataset (Gong et al., 2000)
for which the subjects were asked to move in such a way as to cover the two-dimensional
manifold corresponding to two angles of rotation. We would like learning algorithms to

be able to discover and disentangle such manifold coordinates. Fig. 20.6 illustrates such a
feat.
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Part 11

Deep Networks: Modern
Practices
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This part of the book summarizes the state of modern deep learning as it is
used to solve practical applications.

Deep learning has a long history and many aspirations. Several approaches
have been proposed that have yet to entirely bear fruit. Several ambitious goals
have yet to be realized. These less-developed branches of deep learning appear in
the final part of the book.

This part focuses only on those approaches that are essentially working tech-
nologies that are already used heavily in industry.

Modern deep learning provides a very powerful framework for supervised
learning. By adding more layers and more units within a layer, a deep network can
represent functions of increasing complexity. Most tasks that consist of mapping an
input vector to an output vector, and that are easy for a person to do rapidly, can
be accomplished via deep learning, given sufficiently large models and sufficiently
large datasets of labeled training examples. Other tasks, that can not be described
as associating one vector to another, or that are difficult enough that a person
would require time to think and reflect in order to accomplish the task, remain
beyond the scope of deep learning for now.

This part of the book describes the core parametric function approximation
technology that is behind nearly all modern practical applications of deep learning.
We begin by describing the feedforward deep network model that is used to
represent these functions. Next, we present advanced techniques for regularization
and optimization of such models. Scaling these models to large inputs such as high
resolution images or long temporal sequences requires specialization. We introduce
the convolutional network for scaling to large images and the recurrent neural
network for processing temporal sequences. Finally, we present general guidelines
for the practical methodology involved in designing, building, and configuring an
application involving deep learning, and review some of the applications of deep
learning.

These chapters are the most important for a practitioner—someone who wants
to begin implementing and using deep learning algorithms to solve real-world
problems today.
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Chapter 6

Deep Feedforward Networks

Deep feedforward networks, also often called feedforward neural networks, or multi-
layer perceptrons (MLPs), are the quintessential deep learning models. The goal
of a feedforward network is to approximate some function f*. For example, for
a classifier, y = f*(x) maps an input « to a category y. A feedforward network
defines a mapping y = f(x;0) and learns the value of the parameters @ that result
in the best function approximation.

These models are called feedforward because information flows through the
function being evaluated from @, through the intermediate computations used to
define f, and finally to the output y. There are no feedback connections in which
outputs of the model are fed back into itself. When feedforward neural networks
are extended to include feedback connections, they are called recurrent neural
networks, presented in Chapter 10.

Feedforward networks are of extreme importance to machine learning practi-
tioners. They form the basis of many important commercial applications. For
example, the convolutional networks used for object recognition from photos are a
specialized kind of feedforward network. Feedforward networks are a conceptual
stepping stone on the path to recurrent networks, which power many natural

language applications.

Feedforward neural networks are called networks because they are typically rep-
resented by composing together many different functions. The model is associated
with a directed acyclic graph describing how the functions are composed together.
For example, we might have three functions f), f2) and f® connected in a
chain, to form f(x) = f® (f@ (fM(z))). These chain structures are the most
commonly used structures of neural networks. In this case, f (1) is called the first
layer of the network, f (2) is called the second layer, and so on. The overall length
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of the chain gives the depth of the model. It is from this terminology that the
name “deep learning” arises. The final layer of a feedforward network is called the
output layer. During neural network training, we drive f(x) to match f*(ax). The
training data provides us with noisy, approximate examples of f*(x) evaluated at
different training points. Each example x is accompanied by a label y ~ f*(x).
The training examples specify directly what the output layer must do at each point
x; it must produce a value that is close to y. The behavior of the other layers is
not directly specified by the training data. The learning algorithm must decide
how to use those layers to produce the desired output, but the training data does
not say what each individual layer should do. Instead, the learning algorithm must
decide how to use these layers to best implement an approximation of f*. Because
the training data does not show the desired output for each of these layers, these
layers are called hidden layers.

Finally, these networks are called neural because they are loosely inspired by
neuroscience. Each hidden layer of the network is typically vector-valued. The
dimensionality of these hidden layers determines the width of the model. Each
element of the vector may be interpreted as playing a role analogous to a neuron.
Rather than thinking of the layer as representing a single vector-to-vector function,
we can also think of the layer as consisting of many wnits that act in parallel,
each representing a vector-to-scalar function. Each unit resembles a neuron in
the sense that it receives input from many other units and computes its own
activation value. The idea of using many layers of vector-valued representation
is drawn from neuroscience. The choice of the functions f(i) () used to compute
these representations is also loosely guided by neuroscientific observations about
the functions that biological neurons compute. However, modern neural network
research is guided by many mathematical and engineering disciplines, and the
goal of neural networks is not to perfectly model the brain. It is best to think of
feedforward networks as function approximation machines that are designed to
achieve statistical generalization, occasionally drawing some insights from what we
know about the brain, rather than as models of brain function.

One way to understand feedforward networks is to begin with linear models
and consider how to overcome their limitations. Linear models, such as logistic
regression and linear regression, are appealing because they may be fit efficiently
and reliably, either in closed form or with convex optimization. Linear models also
have the obvious defect that the model capacity is limited to linear functions, so
the model cannot understand the interaction between any two input variables.

To extend linear models to represent nonlinear functions of @, we can apply
the linear model not to x itself but to a transformed input ¢(x), where ¢ is a
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nonlinear transformation. Equivalently, we can apply the kernel trick described in
Sec. 5.7.2, to obtain a nonlinear learning algorithm based on implicitly applying
the ¢ mapping. We can think of ¢ as providing a set of features describing @, or
as providing a new representation for x.

The question is then how to choose the mapping ¢.

1. One option is to use a very generic ¢, such as the infinite-dimensional ¢ that
is implicitly used by kernel machines based on the RBF kernel. If ¢(x) is
of high enough dimension, we can always have enough capacity to fit the
training set, but generalization to the test set often remains poor. Very
generic feature mappings are usually based only on the principle of local
smoothness and do not encode enough prior information to solve advanced
problems.

2. Another option is to manually engineer ¢. Until the advent of deep learning,
this was the dominant approach. This approach requires decades of human
effort for each separate task, with practitioners specializing in different
domains such as speech recognition or computer vision, and with little
transfer between domains.

3. The strategy of deep learning is to learn ¢. In this approach, we have a model
y = f(x;0,w) =o¢(x;0) "w. We now have parameters 8 that we use to learn
¢ from a broad class of functions, and parameters w that map from ¢(x) to
the desired output. This is an example of a deep feedforward network, with
¢ defining a hidden layer. This approach is the only one of the three that
gives up on the convexity of the training problem, but the benefits outweigh
the harms. In this approach, we parametrize the representation as ¢(x; 0)
and use the optimization algorithm to find the 8 that corresponds to a good
representation. If we wish, this approach can capture the benefit of the first
approach by being highly generic—we do so by using a very broad family
¢(x;0). This approach can also capture the benefit of the second approach.
Human practitioners can encode their knowledge to help generalization by
designing families ¢(x; @) that they expect will perform well. The advantage
is that the human designer only needs to find the right general function
family rather than finding precisely the right function.

This general principle of improving models by learning features extends beyond
the feedforward networks described in this chapter. It is a recurring theme of deep
learning that applies to all of the kinds of models described throughout this book.
Feedforward networks are the application of this principle to learning deterministic
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mappings from x to y that lack feedback connections. Other models presented
later will apply these principles to learning stochastic mappings, learning functions
with feedback, and learning probability distributions over a single vector.

We begin this chapter with a simple example of a feedforward network. Next,
we address each of the design decisions needed to deploy a feedforward network.
First, training a feedforward network requires making many of the same design
decisions as are necessary for a linear model: choosing the optimizer, the cost
function, and the form of the output units. We review these basics of gradient-based
learning, then proceed to confront some of the design decisions that are unique
to feedforward networks. Feedforward networks have introduced the concept of a
hidden layer, and this requires us to choose the activation functions that will be
used to compute the hidden layer values. We must also design the architecture of
the network, including how many layers the network should contain, how these
networks should be connected to each other, and how many units should be in
each layer. Learning in deep neural networks requires computing the gradients of
complicated functions. We present the back-propagation algorithm and its modern
generalizations, which can be used to efficiently compute these gradients. Finally,
we close with some historical perspective.

6.1 Example: Learning XOR

To make the idea of a feedforward network more concrete, we begin with an
example of a fully functioning feedforward network on a very simple task: learning
the XOR function.

The XOR function (“exclusive or”) is an operation on two binary values, x;
and zo. When exactly one of these binary values is equal to 1, the XOR function
returns 1. Otherwise, it returns 0. The XOR function provides the target function
y= f*(x) that we want to learn. Our model provides a function y = f(x;0) and
our learning algorithm will adapt the parameters 8 to make f as similar as possible
to f*.

In this simple example, we will not be concerned with statistical generalization.
We want our network to perform correctly on the four points X = {[0,0] T, [0,1] T,
[1,0]", and [1,1]T}. We will train the network on all four of these points. The
only challenge is to fit the training set.

We can treat this problem as a regression problem and use a mean squared error
loss function. We choose this loss function to simplify the math for this example
as much as possible. We will see later that there are other, more appropriate
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approaches for modeling binary data.

Evaluated on our whole training set, the MSE loss function is

70) =3 3 (" ()~ f(z:0)F. (61)

xeX

Now we must choose the form of our model, f(x;0). Suppose that we choose
a linear model, with @ consisting of w and b. Our model is defined to be

f(z;w,b) =z w+b. (6.2)

We can minimize J(@) in closed form with respect to w and b using the normal
equations.

After solving the normal equations, we obtain w = 0 and b = —% The linear
model simply outputs 0.5 everywhere. Why does this happen? Fig. 6.1 shows how
a linear model is not able to represent the XOR function. One way to solve this
problem is to use a model that learns a different feature space in which a linear
model is able to represent the solution.

Specifically, we will introduce a very simple feedforward network with one
hidden layer containing two hidden units. See Fig. 6.2 for an illustration of
this model. This feedforward network has a vector of hidden units h that are
computed by a function f(!)(x; W, ). The values of these hidden units are then
used as the input for a second layer. The second layer is the output layer of the
network. The output layer is still just a linear regression model, but now it is
applied to h rather than to x. The network now contains two functions chained
together: h = f(l)(a:; W.c)and y=f (2)(h; w, b), with the complete model being
fla; W, e,w,b) = fO(fO(x)).

What function should f) compute? Linear models have served us well so far,
and it may be tempting to make f() be linear as well. Unfortunately, if f(1) were
linear, then the feedforward network as a whole would remain a linear function of
its input. Ignoring the intercept terms for the moment, suppose f (1)(513) W'
and f®(h) = hTw. Then f(x) = w' W' a. We could represent this function as
f(x) = " w where W/ = Ww.

Clearly, we must use a nonlinear function to describe the features. Most neural
networks do so using an affine transformation controlled by learned parameters,
followed by a fixed, nonlinear function called an activation function. We use that
strategy here, by defining h = g(W T + ¢), where W provides the weights of a
linear transformation and ¢ the biases. Previously, to describe a linear regression
model, we used a vector of weights and a scalar bias parameter to describe an
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Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left) A linear model applied directly to the original input cannot implement the XOR
function. When x; = 0, the model’s output must increase as r, increases. When z; = 1,
the model’s output must decrease as z, increases. A linear model must apply a fixed
coefficient wa to x2. The linear model therefore cannot use the value of z1 to change

the coefficient on x2 and cannot solve this problem. (Right) In the transformed space
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output 1 have been
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both z = [1,0]" and « = [0,1] to a single point in feature space, h = [1,0]".

The linear model can now describe the function as increasing in h; and decreasing in ha.

In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.
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Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left) In this style, we draw every unit as a node in the
graph. This style is very explicit and unambiguous but for networks larger than this
example it can consume too much space. (Right) In this style, we draw a node in the
graph for each entire vector representing a layer’s activations. This style is much more
compact. Sometimes we annotate the edges in this graph with the name of the parameters
that describe the relationship between two layers. Here, we indicate that a matrix W
describes the mapping fromx to h, and a vector w describes the mapping fromh to .
We typically omit the intercept parameters associated with each layer when labeling this
kind of drawing.

)
w

affine transformation from an input vector to an output scalar. Now, we describe
an affine transformation from a vector @ to a vector h, so an entire vector of bias
parameters is needed. The activation function g is typically chosen to be a function
that is applied element-wise, with h; = g(x" W, +c¢;). In modern neural networks,
the default recommendation is to use the rectified linear unit or ReLU (

) defined by the activation

) Y Y

function g(z) = max{0, z} depicted in Fig. 6.3.

We can now specify our complete network as

flx; W, e,w,b) =w' max{0,W 'z +c}+b. (6.3)
We can now specify a solution to the XOR problem. Let
W — - } | (6.4)
= %], (6:5)
w=| L. (6:6)

173



CHAPTER 6. DEEP FEEDFORWARD NETWORKS

The Rectified Linear Activation Function

1

g(z) = max{0, z}

Figure 6.3: The rectified linear activation function. This activation function is the default
activation function recommended for use with most feedforward neural networks. Applying
this function to the output of a linear transformation yields a nonlinear transformation.
However, the function remains very close to linear, in the sense that is a piecewise linear
function with two linear pieces. Because rectified linear units are nearly linear, they
preserve many of the properties that make linear models easy to optimize with gradient-
based methods. They also preserve many of the properties that make linear models
generalize well. A common principle throughout computer science is that we can build
complicated systems from minimal components. Much as a Turing machine’s memory
needs only to be able to store 0 or 1 states, we can build a universal function approximator
from rectified linear functions.
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and b = 0.

We can now walk through the way that the model processes a batch of inputs.
Let X be the design matrix containing all four points in the binary input space,
with one example per row:

o
0 1

X_ItloJl. (6.7)
11

The first step in the neural network is to multiply the input matrix by the first
layer’s weight matrix:

0 0
1 1
XW = 11 (6.8)
2 2
Next, we add the bias vector ¢, to obtain
R
Lo (6.9)

In this space, all of the examples lie along a line with slope 1. As we move along
this line, the output needs to begin at 0, then rise to 1, then drop back down to 0.
A linear model cannot implement such a function. To finish computing the value
of h for each example, we apply the rectified linear transformation:

o8]

| .
HH (6.10)

This transformation has changed the relationship between the examples. They no
longer lie on a single line. As shown in Fig. 6.1, they now lie in a space where a
linear model can solve the problem.

We finish by multiplying by the weight vector w:
U
1
1
0
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The neural network has obtained the correct answer for every example in the batch.

In this example, we simply specified the solution, then showed that it obtained
zero error. In a real situation, there might be billions of model parameters and
billions of training examples, so one cannot simply guess the solution as we did
here. Instead, a gradient-based optimization algorithm can find parameters that
produce very little error. The solution we described to the XOR problem is at a
global minimum of the loss function, so gradient descent could converge to this
point. There are other equivalent solutions to the XOR problem that gradient
descent could also find. The convergence point of gradient descent depends on the
initial values of the parameters. In practice, gradient descent would usually not
find clean, easily understood, integer-valued solutions like the one we presented
here.

6.2 Gradient-Based Learning

Designing and training a neural network is not much different from training any
other machine learning model with gradient descent. In Sec. 5.10, we described
how to build a machine learning algorithm by specifying an optimization procedure,
a cost function, and a model family.

The largest difference between the linear models we have seen so far and neural
networks is that the nonlinearity of a neural network causes most interesting loss
functions to become non-convex. This means that neural networks are usually
trained by using iterative, gradient-based optimizers that merely drive the cost
function to a very low value, rather than the linear equation solvers used to train
linear regression models or the convex optimization algorithms with global conver-
gence guarantees used to train logistic regression or SVMs. Convex optimization
converges starting from any initial parameters (in theory—in practice it is very
robust but can encounter numerical problems). Stochastic gradient descent applied
to non-convex loss functions has no such convergence guarantee, and is sensitive
to the values of the initial parameters. For feedforward neural networks, it is
important to initialize all weights to small random values. The biases may be
initialized to zero or to small positive values. The iterative gradient-based opti-
mization algorithms used to train feedforward networks and almost all other deep
models will be described in detail in Chapter 8, with parameter initialization in
particular discussed in Sec. 8.4. For the moment, it suffices to understand that
the training algorithm is almost always based on using the gradient to descend the
cost function in one way or another. The specific algorithms are improvements
and refinements on the ideas of gradient descent, introduced in Sec. 4.3, and,
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more specifically, are most often improvements of the stochastic gradient descent
algorithm, introduced in Sec. 5.9.

We can of course, train models such as linear regression and support vector
machines with gradient descent too, and in fact this is common when the training
set is extremely large. From this point of view, training a neural network is not
much different from training any other model. Computing the gradient is slightly
more complicated for a neural network, but can still be done efficiently and exactly.
Sec. 6.5 will describe how to obtain the gradient using the back-propagation
algorithm and modern generalizations of the back-propagation algorithm.

As with other machine learning models, to apply gradient-based learning we
must choose a cost function, and we must choose how to represent the output of
the model. We now revisit these design considerations with special emphasis on
the neural networks scenario.

6.2.1 Cost Functions

An important aspect of the design of a deep neural network is the choice of the
cost function. Fortunately, the cost functions for neural networks are more or less
the same as those for other parametric models, such as linear models.

In most cases, our parametric model defines a distribution p(y | ;0) and
we simply use the principle of maximum likelihood. This means we use the
cross-entropy between the training data and the model’s predictions as the cost
function.

Sometimes, we take a simpler approach, where rather than predicting a complete
probability distribution over y, we merely predict some statistic of y conditioned
on x. Specialized loss functions allow us to train a predictor of these estimates.

The total cost function used to train a neural network will often combine one
of the primary cost functions described here with a regularization term. We have
already seen some simple examples of regularization applied to linear models in Sec.
5.2.2. The weight decay approach used for linear models is also directly applicable
to deep neural networks and is among the most popular regularization strategies.
More advanced regularization strategies for neural networks will be described in
Chapter 7.

6.2.1.1 Learning Conditional Distributions with Maximum Likelihood

Most modern neural networks are trained using maximum likelihood. This means
that the cost function is simply the negative log-likelihood, equivalently described
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as the cross-entropy between the training data and the model distribution. This
cost function is given by

J(O) - _Eﬁc,ywﬁdata logpmodel(y | 33) (612)

The specific form of the cost function changes from model to model, depending
on the specific form of log pmodel. The expansion of the above equation typically
yields some terms that do not depend on the model parameters and may be
discarded. For example, as we saw in Sec. 5.5.1, if pmodel (¥ | ®) = N (y; f(x;0),1I),
then we recover the mean squared error cost,

1 2

T6) = 5Exymipal [y — £(@:0) + const, (6.13)
up to a scaling factor of —% and a term that does not depend on 0. The discarded
constant is based on the variance of the Gaussian distribution, which in this case
we chose not to parametrize. Previously, we saw that the equivalence between
maximum likelihood estimation with an output distribution and minimization of
mean squared error holds for a linear model, but in fact, the equivalence holds
regardless of the f(x;0) used to predict the mean of the Gaussian.

An advantage of this approach of deriving the cost function from maximum
likelihood is that it removes the burden of designing cost functions for each model.
Specifying a model p(y | ) automatically determines a cost function logp(y | x).

One recurring theme throughout neural network design is that the gradient of
the cost function must be large and predictable enough to serve as a good guide
for the learning algorithm. Functions that saturate (become very flat) undermine
this objective because they make the gradient become very small. In many cases
this happens because the activation functions used to produce the output of the
hidden units or the output units saturate. The negative log-likelihood helps to
avoid this problem for many models. Many output units involve an exp function
that can saturate when its argument is very negative. The log function in the
negative log-likelihood cost function undoes the exp of some output units. We will
discuss the interaction between the cost function and the choice of output unit in
Sec. 6.2.2.

One unusual property of the cross-entropy cost used to perform maximum
likelihood estimation is that it usually does not have a minimum value when applied
to the models commonly used in practice. For discrete output variables, most
models are parametrized in such a way that they cannot represent a probability
of zero or one, but can come arbitrarily close to doing so. Logistic regression
is an example of such a model. For real-valued output variables, if the model
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can control the density of the output distribution (for example, by learning the
variance parameter of a Gaussian output distribution) then it becomes possible
to assign extremely high density to the correct training set outputs, resulting in
cross-entropy approaching negative infinity. Regularization techniques described
in Chapter 7 provide several different ways of modifying the learning problem so
that the model cannot reap unlimited reward in this way.

6.2.1.2 Learning Conditional Statistics

Instead of learning a full probability distribution p(y | ;@) we often want to learn
just one conditional statistic of y given «.

For example, we may have a predictor f(x;) that we wish to predict the mean
of y.

If we use a sufficiently powerful neural network, we can think of the neural
network as being able to represent any function f from a wide class of functions,
with this class being limited only by features such as continuity and boundedness
rather than by having a specific parametric form. From this point of view, we
can view the cost function as being a functional rather than just a function. A
functional is a mapping from functions to real numbers. We can thus think of
learning as choosing a function rather than merely choosing a set of parameters.
We can design our cost functional to have its minimum occur at some specific
function we desire. For example, we can design the cost functional to have its
minimum lie on the function that maps « to the expected value of y given x.
Solving an optimization problem with respect to a function requires a mathematical
tool called calculus of variations, described in Sec. 19.4.2. It is not necessary to
understand calculus of variations to understand the content of this chapter. At
the moment, it is only necessary to understand that calculus of variations may be
used to derive the following two results.

Our first result derived using calculus of variations is that solving the optimiza-
tion problem

= arg min Exy~p aneal [ = f (@) (6.14)

yields
(@) = Eprdata(’y|$) [yl (6.15)

so long as this function lies within the class we optimize over. In other words, if we
could train on infinitely many samples from the true data-generating distribution,
minimizing the mean squared error cost function gives a function that predicts the
mean of y for each value of x.
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Different cost functions give different statistics. A second result derived using
calculus of variations is that

= arg min B ymp aually = f (@)1 (6.16)

yields a function that predicts the median value of y for each x, so long as such a
function may be described by the family of functions we optimize over. This cost
function is commonly called mean absolute error.

Unfortunately, mean squared error and mean absolute error often lead to poor
results when used with gradient-based optimization. Some output units that
saturate produce very small gradients when combined with these cost functions.
This is one reason that the cross-entropy cost function is more popular than mean
squared error or mean absolute error, even when it is not necessary to estimate an
entire distribution p(y | ).

6.2.2 Output Units

The choice of cost function is tightly coupled with the choice of output unit. Most
of the time, we simply use the cross-entropy between the data distribution and the
model distribution. The choice of how to represent the output then determines
the form of the cross-entropy function.

Any kind of neural network unit that may be used as an output can also be
used as a hidden unit. Here, we focus on the use of these units as outputs of the
model, but in principle they can be used internally as well. We revisit these units
with additional detail about their use as hidden units in Sec. 6.3.

Throughout this section, we suppose that the feedforward network provides a
set of hidden features defined by h = f(a; 8). The role of the output layer is then
to provide some additional transformation from the features to complete the task
that the network must perform.

6.2.2.1 Linear Units for Gaussian Output Distributions

One simple kind of output unit is an output unit based on an affine transformation
with no nonlinearity. These are often just called linear units.

Given features h, a layer of linear output units produces a vector § = W' h+b.

Linear output layers are often used to produce the mean of a conditional
Gaussian distribution:

p(y|z) =N(y;y,1I). (6.17)
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Maximizing the log-likelihood is then equivalent to minimizing the mean squared
error.

The maximum likelihood framework makes it straightforward to learn the
covariance of the Gaussian too, or to make the covariance of the Gaussian be a
function of the input. However, the covariance must be constrained to be a positive
definite matrix for all inputs. It is difficult to satisfy such constraints with a linear
output layer, so typically other output units are used to parametrize the covariance.
Approaches to modeling the covariance are described shortly, in Sec. 6.2.2.4.

Because linear units do not saturate, they pose little difficulty for gradient-
based optimization algorithms and may be used with a wide variety of optimization
algorithms.

6.2.2.2 Sigmoid Units for Bernoulli Output Distributions

Many tasks require predicting the value of a binary variable y. Classification
problems with two classes can be cast in this form.

The maximume-likelihood approach is to define a Bernoulli distribution over y
conditioned on x.

A Bernoulli distribution is defined by just a single number. The neural net
needs to predict only P(y =1 | ). For this number to be a valid probability, it
must lie in the interval [0, 1].

Satisfying this constraint requires some careful design effort. Suppose we were
to use a linear unit, and threshold its value to obtain a valid probability:

Ply=1|=x) :max{O,min{l,wTh+b}}. (6.18)

This would indeed define a valid conditional distribution, but we would not be able
to train it very effectively with gradient descent. Any time that w'h + b strayed
outside the unit interval, the gradient of the output of the model with respect to
its parameters would be 0. A gradient of 0 is typically problematic because the
learning algorithm no longer has a guide for how to improve the corresponding
parameters.

Instead, it is better to use a different approach that ensures there is always a
strong gradient whenever the model has the wrong answer. This approach is based
on using sigmoid output units combined with maximum likelihood.

A sigmoid output unit is defined by

j=o <wTh + b) (6.19)
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where o is the logistic sigmoid function described in Sec. 3.10.

We can think of the sigmoid output unit as having two components. First, it
uses a linear layer to compute z = w ' h + b. Next, it uses the sigmoid activation
function to convert z into a probability.

We omit the dependence on x for the moment to discuss how to define a
probability distribution over y using the value z. The sigmoid can be motivated
by constructing an unnormalized probability distribution p(y), which does not
sum to 1. We can then divide by an appropriate constant to obtain a valid
probability distribution. If we begin with the assumption that the unnormalized log
probabilities are linear in 4y and z, we can exponentiate to obtain the unnormalized
probabilities. We then normalize to see that this yields a Bernoulli distribution
controlled by a sigmoidal transformation of z:

log P(y) = yz (6.20)
P(y) = exp(yz) (6.21)

Ply) = PW2) 6.22
P S el o
P(y) =0 ((2y—1)2). (6.23)

Probability distributions based on exponentiation and normalization are common
throughout the statistical modeling literature. The z variable defining such a
distribution over binary variables is called a logit.

This approach to predicting the probabilities in log-space is natural to use
with maximum likelihood learning. Because the cost function used with maximum
likelihood is —log P(y | @), the log in the cost function undoes the exp of the
sigmoid. Without this effect, the saturation of the sigmoid could prevent gradient-
based learning from making good progress. The loss function for maximum
likelihood learning of a Bernoulli parametrized by a sigmoid is

J(@) =—log P(y | ) (6.24)
= —logo ((2y —1)2) (6.25)
=¢((1=2y)z). (6.26)

This derivation makes use of some properties from Sec. 3.10. By rewriting
the loss in terms of the softplus function, we can see that it saturates only when
(1 —2y)z is very negative. Saturation thus occurs only when the model already
has the right answer—when y = 1 and z is very positive, or y = 0 and z is very
negative. When 2z has the wrong sign, the argument to the softplus function,
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(1—2y)z, may be simplified to |z|. As|z| becomes large while z has the wrong sign,
the softplus function asymptotes toward simply returning its argument |z|. The
derivative with respect to z asymptotes to sign(z), so, in the limit of extremely
incorrect z, the softplus function does not shrink the gradient at all. This property
is very useful because it means that gradient-based learning can act to quickly
correct a mistaken z.

When we use other loss functions, such as mean squared error, the loss can
saturate anytime o(z) saturates. The sigmoid activation function saturates to 0
when z becomes very negative and saturates to 1 when z becomes very positive.
The gradient can shrink too small to be useful for learning whenever this happens,
whether the model has the correct answer or the incorrect answer. For this reason,
maximum likelihood is almost always the preferred approach to training sigmoid
output units.

Analytically, the logarithm of the sigmoid is always defined and finite, because
the sigmoid returns values restricted to the open interval (0, 1), rather than using
the entire closed interval of valid probabilities [0, 1]. In software implementations,
to avoid numerical problems, it is best to write the negative log-likelihood as a
function of z, rather than as a function of § = o(z). If the sigmoid function
underflows to zero, then taking the logarithm of ¢ yields negative infinity.

6.2.2.3 Softmax Units for Multinoulli Output Distributions

Any time we wish to represent a probability distribution over a discrete variable
with n possible values, we may use the softmax function. This can be seen as a
generalization of the sigmoid function which was used to represent a probability
distribution over a binary variable.

Softmax functions are most often used as the output of a classifier, to represent
the probability distribution over n different classes. More rarely, softmax functions
can be used inside the model itself, if we wish the model to choose between one of
n different options for some internal variable.

In the case of binary variables, we wished to produce a single number
y=Ply=1|x). (6.27)

Because this number needed to lie between 0 and 1, and because we wanted the
logarithm of the number to be well-behaved for gradient-based optimization of
the log-likelihood, we chose to instead predict a number z = logP(y = 1 | x).
Exponentiating and normalizing gave us a Bernoulli distribution controlled by the
sigmoid function.
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To generalize to the case of a discrete variable with n values, we now need
to produce a vector g, with ¢; = Py =i | ). We require not only that each
element of ¢; be between 0 and 1, but also that the entire vector sums to 1 so that
it represents a valid probability distribution. The same approach that worked for
the Bernoulli distribution generalizes to the multinoulli distribution. First, a linear
layer predicts unnormalized log probabilities:

z=WTh+b, (6.28)

where z; = log P(y =i | ). The softmax function can then exponentiate and
normalize z to obtain the desired §. Formally, the softmax function is given by

exp(z;)

Zj exp(2;)

softmax(z); = (6.29)

As with the logistic sigmoid, the use of the exp function works very well when
training the softmax to output a target value y using maximum log-likelihood. In
this case, we wish to maximize log P(y = i; z) = logsoftmax(z);. Defining the
softmax in terms of exp is natural because the log in the log-likelihood can undo
the exp of the softmax:

log softmax(z); = 2z — logz exp(z ). (6.30)
J

The first term of Eq. 6.30 shows that the input z; always has a direct con-
tribution to the cost function. Because this term cannot saturate, we know that
learning can proceed, even if the contribution of z; to the second term of Eq. 6.30
becomes very small. When maximizing the log-likelihood, the first term encourages
z to be pushed up, while the second term encourages all of z to be pushed down.
To gain some intuition for the second term, log j exp(z;), observe that this term
can be roughly approximated by max; z;. This approximation is based on the idea
that exp(z) is insignificant for any z; that is noticeably less than max; z;. The
intuition we can gain from this approximation is that the negative log-likelihood
cost function always strongly penalizes the most active incorrect prediction. If the
correct answer already has the largest input to the softmax, then the —z; term
and the log ), exp(zj) ~ max; z; = z; terms will roughly cancel. This example
will then contribute little to the overall training cost, which will be dominated by
other examples that are not yet correctly classified.

So far we have discussed only a single example. Overall, unregularized maximum
likelihood will drive the model to learn parameters that drive the softmax to predict
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the fraction of counts of each outcome observed in the training set:

m
> et Ly i i)
> 10

Because maximum likelihood is a consistent estimator, this is guaranteed to happen
so long as the model family is capable of representing the training distribution. In
practice, limited model capacity and imperfect optimization will mean that the
model is only able to approximate these fractions.

softmax(z(x; 0)); ~ (6.31)

Many objective functions other than the log-likelihood do not work as well
with the softmax function. Specifically, objective functions that do not use a log to
undo the exp of the softmax fail to learn when the argument to the exp becomes
very negative, causing the gradient to vanish. In particular, squared error is a
poor loss function for softmax units, and can fail to train the model to change its
output, even when the model makes highly confident incorrect predictions (

). To understand why these other loss functions can fail, we need to examine
the softmax function itself.

Y

Like the sigmoid, the softmax activation can saturate. The sigmoid function has
a single output that saturates when its input is extremely negative or extremely
positive. In the case of the softmax, there are multiple output values. These
output values can saturate when the differences between input values become
extreme. When the softmax saturates, many cost functions based on the softmax
also saturate, unless they are able to invert the saturating activating function.

To see that the softmax function responds to the difference between its inputs,
observe that the softmax output is invariant to adding the same scalar to all of its
inputs:

softmax(z) = softmax(z + ¢). (6.32)

Using this property, we can derive a numerically stable variant of the softmax:

softmax(z) = softmax(z — max z;). (6.33)

The reformulated version allows us to evaluate softmax with only small numerical
errors even when z contains extremely large or extremely negative numbers. Ex-
amining the numerically stable variant, we see that the softmax function is driven
by the amount that its arguments deviate from max; z;.

An output softmax(z ); saturates to 1 when the corresponding input is maximal
(z; = max; z;) and z is much greater than all of the other inputs. The output
softmax(z); can also saturate to 0 when z is not maximal and the maximum is
much greater. This is a generalization of the way that sigmoid units saturate, and
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can cause similar difficulties for learning if the loss function is not designed to
compensate for it.

The argument z to the softmax function can be produced in two different ways.
The most common is simply to have an earlier layer of the neural network output
every element of z, as described above using the linear layer z = W T h+ b. While
straightforward, this approach actually overparametrizes the distribution. The
constraint that the n outputs must sum to 1 means that only n — 1 parameters are
necessary; the probability of the n-th value may be obtained by subtracting the
first n —1 probabilities from 1. We can thus impose a requirement that one element
of z be fixed. For example, we can require that z, = 0. Indeed, this is exactly
what the sigmoid unit does. Defining P(y = 1| x) = o(z) is equivalent to defining
P(y = 1| «) = softmax(z); with a two-dimensional z and z; = 0. Both the n — 1
argument and the n argument approaches to the softmax can describe the same
set of probability distributions, but have different learning dynamics. In practice,
there is rarely much difference between using the overparametrized version or the
restricted version, and it is simpler to implement the overparametrized version.

From a neuroscientific point of view, it is interesting to think of the softmax as
a way to create a form of competition between the units that participate in it: the
softmax outputs always sum to 1 so an increase in the value of one unit necessarily
corresponds to a decrease in the value of others. This is analogous to the lateral
inhibition that is believed to exist between nearby neurons in the cortex. At the
extreme (when the difference between the maximal a; and the others is large in
magnitude) it becomes a form of winner-take-all (one of the outputs is nearly 1
and the others are nearly 0).

The name “softmax” can be somewhat confusing. The function is more closely
related to the argmax function than the max function. The term “soft” derives
from the fact that the softmax function is continuous and differentiable. The
argmax function, with its result represented as a one-hot vector, is not continuous
or differentiable. The softmax function thus provides a “softened” version of the
argmax. The corresponding soft version of the maximum function issoftmax(z) ' z.
It would perhaps be better to call the softmax function “softargmax,” but the
current name is an entrenched convention.

6.2.2.4 Other Output Types

The linear, sigmoid, and softmax output units described above are the most
common. Neural networks can generalize to almost any kind of output layer that
we wish. The principle of maximum likelihood provides a guide for how to design
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a good cost function for nearly any kind of output layer.

In general, if we define a conditional distribution p(y | «;0), the principle of
maximum likelihood suggests we use —log p(y | «; 0) as our cost function.

In general, we can think of the neural network as representing a function f(x; ).
The outputs of this function are not direct predictions of the value y. Instead,
f(x;0) = w provides the parameters for a distribution over y. Our loss function
can then be interpreted as —log p(y;w(x)).

For example, we may wish to learn the variance of a conditional Gaussian for
y, given x. In the simple case, where the variance ¢® is a constant, there is a
closed form expression because the maximum likelihood estimator of variance is
simply the empirical mean of the squared difference between observations y and
their expected value. A computationally more expensive approach that does not
require writing special-case code is to simply include the variance as one of the
properties of the distribution p(y | @) that is controlled by w = f(x;6). The
negative log-likelihood —log p(y; w(x)) will then provide a cost function with the
appropriate terms necessary to make our optimization procedure incrementally
learn the variance. In the simple case where the standard deviation does not depend
on the input, we can make a new parameter in the network that is copied directly
into w. This new parameter might be o itself or could be a parameter v representing
o? or it could be a parameter 3 representing ;12, depending on how we choose to
parametrize the distribution. We may wish our model to predict a different amount
of variance in y for different values of x. This is called a heteroscedastic model.
In the heteroscedastic case, we simply make the specification of the variance be
one of the values output by f(x;8). A typical way to do this is to formulate the
Gaussian distribution using precision, rather than variance, as described in Eq.
3.22. In the multivariate case it is most common to use a diagonal precision matrix

diag(8). (6.34)

This formulation works well with gradient descent because the formula for the
log-likelihood of the Gaussian distribution parametrized by 8 involves only mul-
tiplication by ; and addition of log3;. The gradient of multiplication, addition,
and logarithm operations is well-behaved. By comparison, if we parametrized the
output in terms of variance, we would need to use division. The division function
becomes arbitrarily steep near zero. While large gradients can help learning,
arbitrarily large gradients usually result in instability. If we parametrized the
output in terms of standard deviation, the log-likelihood would still involve division,
and would also involve squaring. The gradient through the squaring operation
can vanish near zero, making it difficult to learn parameters that are squared.
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Regardless of whether we use standard deviation, variance, or precision, we must
ensure that the covariance matrix of the Gaussian is positive definite. Because
the eigenvalues of the precision matrix are the reciprocals of the eigenvalues of
the covariance matrix, this is equivalent to ensuring that the precision matrix is
positive definite. If we use a diagonal matrix, or a scalar times the diagonal matrix,
then the only condition we need to enforce on the output of the model is positivity.
If we suppose that a is the raw activation of the model used to determine the
diagonal precision, we can use the softplus function to obtain a positive precision
vector: B = ((a). This same strategy applies equally if using variance or standard
deviation rather than precision or if using a scalar times identity rather than
diagonal matrix.

It is rare to learn a covariance or precision matrix with richer structure than
diagonal. If the covariance is full and conditional, then a parametrization must
be chosen that guarantees positive-definiteness of the predicted covariance matrix.
This can be achieved by writing X(x) = B(x)B' (x), where B is an unconstrained
square matrix. One practical issue if the matrix is full rank is that computing the
likelihood is expensive, with a d x d matrix requiring O(d?) computation for the
determinant and inverse of 3 (&) (or equivalently, and more commonly done, its
eigendecomposition or that of B(x)).

We often want to perform multimodal regression, that is, to predict real values
that come from a conditional distribution p(y | ) that can have several different
peaks in y space for the same value of x. In this case, a Gaussian mixture is
a natural representation for the output ( : : : ).
Neural networks with Gaussian mixtures as their output are often called mizture
density networks. A Gaussian mixture output with n components is defined by the
conditional probability distribution

n

plylz) =) plc=i|2)N(y;u? (@), (). (6.35)
i=1
The neural network must have three outputs: a vector defining p(c =i | x), a
matrix providing u(i)(a)) for all 4, and a tensor providing E(i)(m) for all 7. These
outputs must satisfy different constraints:

1. Mixture components p(c = i | @): these form a multinoulli distribution
over the n different components associated with latent variable! ¢, and can

'We consider c to be latent because we do not observe it in the data: given input x and target
y, it is not possible to know with certainty which Gaussian component was responsible for y, but
we can imagine that y was generated by picking one of them, and make that unobserved choice a
random variable.
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typically be obtained by a softmax over an n-dimensional vector, to guarantee
that these outputs are positive and sum to 1.

2. Means p)(x): these indicate the center or mean associated with the i-th
Gaussian component, and are unconstrained (typically with no nonlinearity
at all for these output units). If y is a d-vector, then the network must output
an n X d matrix containing all n of these d-dimensional vectors. Learning
these means with maximum likelihood is slightly more complicated than
learning the means of a distribution with only one output mode. We only
want to update the mean for the component that actually produced the
observation. In practice, we do not know which component produced each
observation. The expression for the negative log-likelihood naturally weights
each example’s contribution to the loss for each component by the probability
that the component produced the example.

3. Covariances E(i)(m): these specify the covariance matrix for each component
t. As when learning a single Gaussian component, we typically use a diagonal
matrix to avoid needing to compute determinants. As with learning the means
of the mixture, maximum likelihood is complicated by needing to assign
partial responsibility for each point to each mixture component. Gradient
descent will automatically follow the correct process if given the correct
specification of the negative log-likelihood under the mixture model.

It has been reported that gradient-based optimization of conditional Gaussian
mixtures (on the output of neural networks) can be unreliable, in part because one
gets divisions (by the variance) which can be numerically unstable (when some
variance gets to be small for a particular example, yielding very large gradients).
One solution is to clip gradients (see Sec. 10.11.1) while another is to scale the
gradients heuristically ( , ).

Gaussian mixture outputs are particularly effective in generative models of
speech ( : ) or movements of physical objects ( : ). The
mixture density strategy gives a way for the network to represent multiple output
modes and to control the variance of its output, which is crucial for obtaining
a high degree of quality in these real-valued domains. An example of a mixture
density network is shown in Fig. 6.4.

In general, we may wish to continue to model larger vectors y containing more
variables, and to impose richer and richer structures on these output variables. For
example, we may wish for our neural network to output a sequence of characters
that forms a sentence. In these cases, we may continue to use the principle
of maximum likelihood applied to our model p(y;w(x)), but the model we use
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Figure 6.4: Samples drawn from a neural network with a mixture density output layer.
The input z is sampled from a uniform distribution and the output y is sampled from
Pmodel (¥ | ). The neural network is able to learn nonlinear mappings from the input to
the parameters of the output distribution. These parameters include the probabilities
governing which of three mixture components will generate the output as well as the
parameters for each mixture component. Each mixture component is Gaussian with
predicted mean and variance. All of these aspects of the output distribution are able to
vary with respect to the input z, and to do so in nonlinear ways.

to describe y becomes complex enough to be beyond the scope of this chapter.
Chapter 10 describes how to use recurrent neural networks to define such models
over sequences, and Part 111 describes advanced techniques for modeling arbitrary
probability distributions.

6.3 Hidden Units

So far we have focused our discussion on design choices for neural networks that
are common to most parametric machine learning models trained with gradient-
based optimization. Now we turn to an issue that is unique to feedforward neural
networks: how to choose the type of hidden unit to use in the hidden layers of the
model.

The design of hidden units is an extremely active area of research and does not
yet have many definitive guiding theoretical principles.

Rectified linear units are an excellent default choice of hidden unit. Many other
types of hidden units are available. It can be difficult to determine when to use
which kind (though rectified linear units are usually an acceptable choice). We
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describe here some of the basic intuitions motivating each type of hidden units.
These intuitions can be used to suggest when to try out each of these units. It is
usually impossible to predict in advance which will work best. The design process
consists of trial and error, intuiting that a kind of hidden unit may work well,
and then training a network with that kind of hidden unit and evaluating its
performance on a validation set.

Some of the hidden units included in this list are not actually differentiable at
all input points. For example, the rectified linear function g(z) = max{0, 2} is not
differentiable at z = 0. This may seem like it invalidates ¢ for use with a gradient-
based learning algorithm. In practice, gradient descent still performs well enough
for these models to be used for machine learning tasks. This is in part because
neural network training algorithms do not usually arrive at a local minimum of
the cost function, but instead merely reduce its value significantly, as shown in
Fig. 4.3. These ideas will be described further in Chapter 8. Because we do not
expect training to actually reach a point where the gradient is 0, it is acceptable
for the minima of the cost function to correspond to points with undefined gradient.
Hidden units that are not differentiable are usually non-differentiable at only a
small number of points. In general, a function g(z) has a left derivative defined
by the slope of the function immediately to the left of z and a right derivative
defined by the slope of the function immediately to the right of z. A function
is differentiable at z only if both the left derivative and the right derivative are
defined and equal to each other. The functions used in the context of neural
networks usually have defined left derivatives and defined right derivatives. In the
case of g(2) = max{0, 2z}, the left derivative at z = 0 is 0 and the right derivative
is 1. Software implementations of neural network training usually return one of
the one-sided derivatives rather than reporting that the derivative is undefined or
raising an error. This may be heuristically justified by observing that gradient-
based optimization on a digital computer is subject to numerical error anyway.
When a function is asked to evaluate ¢(0), it is very unlikely that the underlying
value truly was 0. Instead, it was likely to be some small value € that was rounded
to 0. In some contexts, more theoretically pleasing justifications are available, but
these usually do not apply to neural network training. The important point is that
in practice one can safely disregard the non-differentiability of the hidden unit
activation functions described below.

Unless indicated otherwise, most hidden units can be described as accepting
a vector of inputs x, computing an affine transformation z = W 'z + b, and
then applying an element-wise nonlinear function g(z). Most hidden units are
distinguished from each other only by the choice of the form of the activation
function g(z).
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6.3.1 Rectified Linear Units and Their Generalizations

Rectified linear units use the activation function g(z) = max{0, z}.

Rectified linear units are easy to optimize because they are so similar to linear
units. The only difference between a linear unit and a rectified linear unit is
that a rectified linear unit outputs zero across half its domain. This makes the
derivatives through a rectified linear unit remain large whenever the unit is active.
The gradients are not only large but also consistent. The second derivative of the
rectifying operation is 0 almost everywhere, and the derivative of the rectifying
operation is 1 everywhere that the unit is active. This means that the gradient
direction is far more useful for learning than it would be with activation functions
that introduce second-order effects.

Rectified linear units are typically used on top of an affine transformation:
h =g(W'x +b). (6.36)

When initializing the parameters of the affine transformation, it can be a good
practice to set all elements of b to a small, positive value, such as 0.1. This makes
it very likely that the rectified linear units will be initially active for most inputs
in the training set and allow the derivatives to pass through.

Several generalizations of rectified linear units exist. Most of these general-
izations perform comparably to rectified linear units and occasionally perform
better.

One drawback to rectified linear units is that they cannot learn via gradient-
based methods on examples for which their activation is zero. A variety of
generalizations of rectified linear units guarantee that they receive gradient every-
where.

Three generalizations of rectified linear units are based on using a non-zero
slope o; when z; < 0: h; = g(z,a); = max(0, z;) + a; min(0, z;). Absolute value
rectification fixes a; = —1 to obtain g(z) = |z|. It is used for object recognition
from images ( : ), where it makes sense to seek features that are
invariant under a polarity reversal of the input illumination. Other generalizations
of rectified linear units are more broadly applicable. A leaky ReL U ( ,

) fixes «; to a small value like 0.01 while a parametric ReLU or PReLU treats
o; as a learnable parameter ( : ).

Mazxout units ( : ) generalize rectified linear units further.
Instead of applying an element-wise function g(z), maxout units divide z into
groups of k values. Each maxout unit then outputs the maximum element of one
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of these groups:
9(z)i = max z (6.37)
JjeG®
where G () is the indices of the inputs for group i, { (i — 1)k + 1,...,ik}. This
provides a way of learning a piecewise linear function that responds to multiple
directions in the input @ space.

A maxout unit can learn a piecewise linear, convex function with up to k pieces.
Maxout units can thus be seen as learning the activation function itself rather
than just the relationship between units. With large enough k, a maxout unit can
learn to approximate any convex function with arbitrary fidelity. In particular,
a maxout layer with two pieces can learn to implement the same function of the
input & as a traditional layer using the rectified linear activation function, absolute
value rectification function, or the leaky or parametric ReLU, or can learn to
implement a totally different function altogether. The maxout layer will of course
be parametrized differently from any of these other layer types, so the learning
dynamics will be different even in the cases where maxout learns to implement the
same function of x as one of the other layer types.

Each maxout unit is now parametrized by k weight vectors instead of just one,
so maxout units typically need more regularization than rectified linear units. They
can work well without regularization if the training set is large and the number of
pieces per unit is kept low ( , ).

Maxout units have a few other benefits. In some cases, one can gain some sta-
tistical and computational advantages by requiring fewer parameters. Specifically,
if the features captured by n different linear filters can be summarized without
losing information by taking the max over each group of k features, then the next
layer can get by with k times fewer weights.

Because each unit is driven by multiple filters, maxout units have some redun-
dancy that helps them to resist a phenomenon called catastrophic forgetting in
which neural networks forget how to perform tasks that they were trained on in
the past ( : ).

Rectified linear units and all of these generalizations of them are based on the
principle that models are easier to optimize if their behavior is closer to linear.
This same general principle of using linear behavior to obtain easier optimization
also applies in other contexts besides deep linear networks. Recurrent networks can
learn from sequences and produce a sequence of states and outputs. When training
them, one needs to propagate information through several time steps, which is much
easier when some linear computations (with some directional derivatives being of
magnitude near 1) are involved. One of the best-performing recurrent network
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architectures, the LSTM, propagates information through time via summation—a
particular straightforward kind of such linear activation. This is discussed further
in Sec. 10.10.

6.3.2 Logistic Sigmoid and Hyperbolic Tangent

Prior to the introduction of rectified linear units, most neural networks used the
logistic sigmoid activation function

g9(z) =o(z) (6.38)
or the hyperbolic tangent activation function
g(z) = tanh(z). (6.39)

These activation functions are closely related because tanh(z) = 20(2z) — 1.

We have already seen sigmoid units as output units, used to predict the
probability that a binary variable is 1. Unlike piecewise linear units, sigmoidal
units saturate across most of their domain—they saturate to a high value when
z is very positive, saturate to a low value when z is very negative, and are only
strongly sensitive to their input when z is near 0. The widespread saturation of
sigmoidal units can make gradient-based learning very difficult. For this reason,
their use as hidden units in feedforward networks is now discouraged. Their use
as output units is compatible with the use of gradient-based learning when an
appropriate cost function can undo the saturation of the sigmoid in the output
layer.

When a sigmoidal activation function must be used, the hyperbolic tangent
activation function typically performs better than the logistic sigmoid. It resembles
the identity function more closely, in the sense that tanh (0) = 0 while 0 (0) = %
Because tanh is similar to identity near 0, training a deep neural network ¢ =
w' tanh(U " tanh(V Tx)) resembles training a linear model § = w U TV Tz so
long as the activations of the network can be kept small. This makes training the

tanh network easier.

Sigmoidal activation functions are more common in settings other than feed-
forward networks. Recurrent networks, many probabilistic models, and some
autoencoders have additional requirements that rule out the use of piecewise
linear activation functions and make sigmoidal units more appealing despite the
drawbacks of saturation.
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6.3.3 Other Hidden Units

Many other types of hidden units are possible, but are used less frequently.

In general, a wide variety of differentiable functions perform perfectly well.
Many unpublished activation functions perform just as well as the popular ones.
To provide a concrete example, the authors tested a feedforward network using
h = cos(Wx + b) on the MNIST dataset and obtained an error rate of less than
1%, which is competitive with results obtained using more conventional activation
functions. During research and development of new techniques, it is common
to test many different activation functions and find that several variations on
standard practice perform comparably. This means that usually new hidden unit
types are published only if they are clearly demonstrated to provide a significant
improvement. New hidden unit types that perform roughly comparably to known
types are so common as to be uninteresting.

It would be impractical to list all of the hidden unit types that have appeared
in the literature. We highlight a few especially useful and distinctive ones.

One possibility is to not have an activation g(z) at all. One can also think of
this as using the identity function as the activation function. We have already
seen that a linear unit can be useful as the output of a neural network. It may
also be used as a hidden unit. If every layer of the neural network consists of only
linear transformations, then the network as a whole will be linear. However, it
is acceptable for some layers of the neural network to be purely linear. Consider
a neural network layer with n inputs and p outputs, h = ¢( W'z +b). We may
replace this with two layers, with one layer using weight matrix U and the other
using weight matrix V. If the first layer has no activation function, then we have
essentially factored the weight matrix of the original layer based on W. The
factored approach is to compute h = g(VTUT:L' +b). If U produces g outputs,
then U and V together contain only (n + p)q parameters, while W contains np
parameters. For small ¢, this can be a considerable saving in parameters. It
comes at the cost of constraining the linear transformation to be low-rank, but
these low-rank relationships are often sufficient. Linear hidden units thus offer an
effective way of reducing the number of parameters in a network.

Softmax units are another kind of unit that is usually used as an output (as
described in Sec. 6.2.2.3) but may sometimes be used as a hidden unit. Softmax
units naturally represent a probability distribution over a discrete variable with k
possible values, so they may be used as a kind of switch. These kinds of hidden
units are usually only used in more advanced architectures that explicitly learn to
manipulate memory, described in Sec. 10.12.
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A few other reasonably common hidden unit types include:

e Radial basis function or RBF unit: h; = exp (_;12‘ |W.; —CUH2). This
function becomes more active as @ approaches a template W. ;. Because it
saturates to 0 for most x, it can be difficult to optimize.

e Softplus: g(a) = ((a) = log(1 + e%). This is a smooth version of the rectifier,

introduced by ( ) for function approximation and by
( ) for the conditional distributions of undirected probabilistic
models. ( ) compared the softplus and rectifier and found

better results with the latter. The use of the softplus is generally discouraged.
The softplus demonstrates that the performance of hidden unit types can
be very counterintuitive—one might expect it to have an advantage over
the rectifier due to being differentiable everywhere or due to saturating less
completely, but empirically it does not.

e Hard tanh: this is shaped similarly to the tanh and the rectifier but unlike
the latter, it is bounded, g(a) = max(—1,min(1,a)). It was introduced

by (2004).

Hidden unit design remains an active area of research and many useful hidden
unit types remain to be discovered.

6.4 Architecture Design

Another key design consideration for neural networks is determining the architecture.
The word architecture refers to the overall structure of the network: how many
units it should have and how these units should be connected to each other.

Most neural networks are organized into groups of units called layers. Most
neural network architectures arrange these layers in a chain structure, with each
layer being a function of the layer that preceded it. In this structure, the first layer
is given by

R = ¢ (W“)Tm + b<1>) , (6.40)

the second layer is given by
R = 43 (W(2)Th(1) + b@)) : (6.41)
and so on.
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In these chain-based architectures, the main architectural considerations are
to choose the depth of the network and the width of each layer. As we will see,
a network with even one hidden layer is sufficient to fit the training set. Deeper
networks often are able to use far fewer units per layer and far fewer parameters
and often generalize to the test set, but are also often harder to optimize. The
ideal network architecture for a task must be found via experimentation guided by
monitoring the validation set error.

6.4.1 Universal Approximation Properties and Depth

A linear model, mapping from features to outputs via matrix multiplication, can
by definition represent only linear functions. It has the advantage of being easy to
train because many loss functions result in convex optimization problems when
applied to linear models. Unfortunately, we often want to learn nonlinear functions.

At first glance, we might presume that learning a nonlinear function requires
designing a specialized model family for the kind of nonlinearity we want to learn.
Fortunately, feedforward networks with hidden layers provide a universal approxi-
mation framework. Specifically, the universal approximation theorem ( ,

: , ) states that a feedforward network with a linear output layer
and at least one hidden layer with any “squashing” activation function (such as
the logistic sigmoid activation function) can approximate any Borel measurable
function from one finite-dimensional space to another with any desired non-zero
amount of error, provided that the network is given enough hidden units. The
derivatives of the feedforward network can also approximate the derivatives of the
function arbitrarily well ( : ). The concept of Borel measurability
is beyond the scope of this book; for our purposes it suffices to say that any
continuous function on a closed and bounded subset of R" is Borel measurable
and therefore may be approximated by a neural network. A neural network may
also approximate any function mapping from any finite dimensional discrete space
to another. While the original theorems were first stated in terms of units with
activation functions that saturate both for very negative and for very positive
arguments, universal approximation theorems have also been proven for a wider
class of activation functions, which includes the now commonly used rectified linear
unit ( : ).

The universal approximation theorem means that regardless of what function
we are trying to learn, we know that a large MLP will be able to represent this
function. However, we are not guaranteed that the training algorithm will be able
to learn that function. Even if the MLP is able to represent the function, learning
can fail for two different reasons. First, the optimization algorithm used for training
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may not be able to find the value of the parameters that corresponds to the desired
function. Second, the training algorithm might choose the wrong function due to
overfitting. Recall from Sec. 5.2.1 that the “no free lunch” theorem shows that
there is no universally superior machine learning algorithm. Feedforward networks
provide a universal system for representing functions, in the sense that, given a
function, there exists a feedforward network that approximates the function. There
is no universal procedure for examining a training set of specific examples and
choosing a function that will generalize to points not in the training set.

The universal approximation theorem says that there exists a network large
enough to achieve any degree of accuracy we desire, but the theorem does not
say how large this network will be. ( ) provides some bounds on the
size of a single-layer network needed to approximate a broad class of functions.
Unfortunately, in the worse case, an exponential number of hidden units (possibly
with one hidden unit corresponding to each input configuration that needs to be
distinguished) may be required. This is easiest to see in the binary case: the
number of possible binary functions on vectors v € {0, 1} is 22" and selecting
one such function requires 2 bits, which will in general require O(2™) degrees of
freedom.

In summary, a feedforward network with a single layer is sufficient to represent
any function, but the layer may be infeasibly large and may fail to learn and
generalize correctly. In many circumstances, using deeper models can reduce the
number of units required to represent the desired function and can reduce the
amount of generalization error.

There exist families of functions which can be approximated efficiently by an
architecture with depth greater than some value d, but which require a much larger
model if depth is restricted to be less than or equal to d. In many cases, the number
of hidden units required by the shallow model is exponential in n. Such results
were first proven for models that do not resemble the continuous, differentiable
neural networks used for machine learning, but have since been extended to these
models. The first results were for circuits of logic gates ( , ). Later
work extended these results to linear threshold units with non-negative weights
( , : , ), and then to networks with
continuous-valued activations ( , ; ) ). Many modern
neural networks use rectified linear units. ( ) demonstrated
that shallow networks with a broad family of non-polynomial activation functions,
including rectified linear units, have universal approximation properties, but these
results do not address the questions of depth or efficiency—they specify only that
a sufficiently wide rectifier network could represent any function.
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( ) and ( ) showed that functions representable with a
deep rectifier net can require an exponential number of hidden units with a shallow
(one hidden layer) network. More precisely, they showed that piecewise linear
networks (which can be obtained from rectifier nonlinearities or maxout units) can
represent functions with a number of regions that is exponential in the depth of the
network. Fig. 6.5 illustrates how a network with absolute value rectification creates
mirror images of the function computed on top of some hidden unit, with respect
to the input of that hidden unit. Each hidden unit specifies where to fold the
input space in order to create mirror responses (on both sides of the absolute value
nonlinearity). By composing these folding operations, we obtain an exponentially
large number of piecewise linear regions which can capture all kinds of regular
(e.g., repeating) patterns.

Figure 6.5: An intuitive, geometric explanation of the exponential advantage of deeper
rectifier networks formally shown by ( ) and by ( ).
(Left) An absolute value rectification unit has the same output for every pair of mirror
points in its input. The mirror axis of symmetry is given by the hyperplane defined by the
weights and bias of the unit. A function computed on top of that unit (the green decision
surface) will be a mirror image of a simpler pattern across that axis of symmetry. (Center)
The function can be obtained by folding the space around the axis of symmetry. (Right)
Another repeating pattern can be folded on top of the first (by another downstream unit)
to obtain another symmetry (which is now repeated four times, with two hidden layers).

More precisely, the main theorem in ( ) states that the
number of linear regions carved out by a deep rectifier network with d inputs,
depth [, and n units per hidden layer, is

0 ((Z) d(ll)nd> , (6.42)

i.e., exponential in the depth [. In the case of maxout networks with k filters per
unit, the number of linear regions is

o) (k<l—1>+d) . (6.43)

199



CHAPTER 6. DEEP FEEDFORWARD NETWORKS

Of course, there is no guarantee that the kinds of functions we want to learn in
applications of machine learning (and in particular for AI) share such a property.

We may also want to choose a deep model for statistical reasons. Any time
we choose a specific machine learning algorithm, we are implicitly stating some
set of prior beliefs we have about what kind of function the algorithm should
learn. Choosing a deep model encodes a very general belief that the function we
want to learn should involve composition of several simpler functions. This can be
interpreted from a representation learning point of view as saying that we believe
the learning problem consists of discovering a set of underlying factors of variation
that can in turn be described in terms of other, simpler underlying factors of
variation. Alternately, we can interpret the use of a deep architecture as expressing
a belief that the function we want to learn is a computer program consisting of
multiple steps, where each step makes use of the previous step’s output. These
intermediate outputs are not necessarily factors of variation, but can instead be
analogous to counters or pointers that the network uses to organize its internal
processing. Empirically, greater depth does seem to result in better generalization
for a wide variety of tasks ( , : , : , :

, ; , ). See Fig. 6.6 and Fig. 6.7 for examples of some
of these empirical results. This suggests that using deep architectures does indeed

express a useful prior over the space of functions the model learns.

6.4.2 Other Architectural Considerations

So far we have described neural networks as being simple chains of layers, with the
main considerations being the depth of the network and the width of each layer.
In practice, neural networks show considerably more diversity.

Many neural network architectures have been developed for specific tasks.
Specialized architectures for computer vision called convolutional networks are
described in Chapter 9. Feedforward networks may also be generalized to the
recurrent neural networks for sequence processing, described in Chapter 10, which
have their own architectural considerations.

In general, the layers need not be connected in a chain, even though this is the
most common practice. Many architectures build a main chain but then add extra
architectural features to it, such as skip connections going from layer ¢ to layer
1+ 2 or higher. These skip connections make it easier for the gradient to flow from
output layers to layers nearer the input.
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Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from

( ). The test set accuracy consistently increases with increasing depth. See
Fig. 6.7 for a control experiment demonstrating that other increases to the model size do
not yield the same effect.
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Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from ( ) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network used to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million. This suggests that using a deep model expresses a useful preference over
the space of functions the model can learn. Specifically, it expresses a belief that the
function should consist of many simpler functions composed together. This could result
either in learning a representation that is composed in turn of simpler representations (e.g.,
corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize
them).
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Another key consideration of architecture design is exactly how to connect a
pair of layers to each other. In the default neural network layer described by a linear
transformation via a matrix W, every input unit is connected to every output
unit. Many specialized networks in the chapters ahead have fewer connections, so
that each unit in the input layer is connected to only a small subset of units in
the output layer. These strategies for reducing the number of connections reduce
the number of parameters and the amount of computation required to evaluate
the network, but are often highly problem-dependent. For example, convolutional
networks, described in Chapter 9, use specialized patterns of sparse connections
that are very effective for computer vision problems. In this chapter, it is difficult
to give much more specific advice concerning the architecture of a generic neural
network. Subsequent chapters develop the particular architectural strategies that
have been found to work well for different application domains.

6.5 Back-Propagation and Other Differentiation Algo-
rithms

When we use a feedforward neural network to accept an input  and produce an
output 9, information flows forward through the network. The inputs & provide
the initial information that then propagates up to the hidden units at each layer
and finally produces y. This is called forward propagation. During training,
forward propagation can continue onward until it produces a scalar cost J(0). The
back-propagation algorithm ( , ), often simply called backprop,
allows the information from the cost to then flow backwards through the network,
in order to compute the gradient.

Computing an analytical expression for the gradient is straightforward, but
numerically evaluating such an expression can be computationally expensive. The
back-propagation algorithm does so using a simple and inexpensive procedure.

The term back-propagation is often misunderstood as meaning the whole
learning algorithm for multi-layer neural networks. Actually, back-propagation
refers only to the method for computing the gradient, while another algorithm,
such as stochastic gradient descent, is used to perform learning using this gradient.
Furthermore, back-propagation is often misunderstood as being specific to multi-
layer neural networks, but in principle it can compute derivatives of any function
(for some functions, the correct response is to report that the derivative of the
function is undefined). Specifically, we will describe how to compute the gradient
Vz f(x,y) for an arbitrary function f, where « is a set of variables whose derivatives
are desired, and y is an additional set of variables that are inputs to the function
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but whose derivatives are not required. In learning algorithms, the gradient we most
often require is the gradient of the cost function with respect to the parameters,
Ve J(0). Many machine learning tasks involve computing other derivatives, either
as part of the learning process, or to analyze the learned model. The back-
propagation algorithm can be applied to these tasks as well, and is not restricted
to computing the gradient of the cost function with respect to the parameters. The
idea of computing derivatives by propagating information through a network is
very general, and can be used to compute values such as the Jacobian of a function
f with multiple outputs. We restrict our description here to the most commonly
used case where f has a single output.

6.5.1 Computational Graphs

So far we have discussed neural networks with a relatively informal graph language.
To describe the back-propagation algorithm more precisely, it is helpful to have a
more precise computational graph language.

Many ways of formalizing computation as graphs are possible.

Here, we use each node in the graph to indicate a variable. The variable may
be a scalar, vector, matrix, tensor, or even a variable of another type.

To formalize our graphs, we also need to introduce the idea of an operation.
An operation is a simple function of one or more variables. Our graph language
is accompanied by a set of allowable operations. Functions more complicated
than the operations in this set may be described by composing many operations
together.

Without loss of generality, we define an operation to return only a single
output variable. This does not lose generality because the output variable can have
multiple entries, such as a vector. Software implementations of back-propagation
usually support operations with multiple outputs, but we avoid this case in our
description because it introduces many extra details that are not important to
conceptual understanding.

If a variable y is computed by applying an operation to a variable x, then
we draw a directed edge from z to y. We sometimes annotate the output node
with the name of the operation applied, and other times omit this label when the
operation is clear from context.

Examples of computational graphs are shown in Fig. 6.8.
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Figure 6.8: Examples of computational graphs. (a) The graph using thex operation to
compute z = zy. (b) The graph for the logistic regression prediction § = o (x' w + b).
Some of the intermediate expressions do not have names in the algebraic expression
but need names in the graph. We simply name thei-th such variable u. (¢) The
computational graph for the expression H = max{0, X W + b}, which computes a design
matrix of rectified linear unit activations H given a design matrix containing a minibatch
of inputs X. (d) Examples a—c applied at most one operation to each variable, but it
is possible to apply more than one operation. Here we show a computation graph that
applies more than one operation to the weights w of a linear regression model. The
weights are used to make the both the prediction § and the weight decay penalty A, w2,
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6.5.2 Chain Rule of Calculus

The chain rule of calculus (not to be confused with the chain rule of probability) is
used to compute the derivatives of functions formed by composing other functions
whose derivatives are known. Back-propagation is an algorithm that computes the
chain rule, with a specific order of operations that is highly efficient.

Let = be a real number, and let f and g both be functions mapping from a real
number to a real number. Suppose that y = g(x) and z = f(g(x)) = f(y). Then

the chain rule states that
dz dzdy

— == 6.44
dx  dydx ( )

We can generalize this beyond the scalar case. Suppose that x € R™, y € R",

g maps from R™ to R* and f maps from R" to R. Ify = g(x) and z = f(y), then

02 50z 0y 015

T

where % is the n x m Jacobian matrix of g.

From this we see that the gradient of a variable & can be obtained by multiplying
a Jacobian matrix % by a gradient Vj, z. The back-propagation algorithm consists

of performing such a Jacobian-gradient product for each operation in the graph.

Usually we do not apply the back-propagation algorithm merely to vectors,
but rather to tensors of arbitrary dimensionality. Conceptually, this is exactly the
same as back-propagation with vectors. The only difference is how the numbers
are arranged in a grid to form a tensor. We could imagine flattening each tensor
into a vector before we run back-propagation, computing a vector-valued gradient,
and then reshaping the gradient back into a tensor. In this rearranged view,
back-propagation is still just multiplying Jacobians by gradients.

To denote the gradient of a value z with respect to a tensor X, we write Vxz,
just as if X were a vector. The indices into X now have multiple coordinates—for
example, a 3-D tensor is indexed by three coordinates. We can abstract this away
by using a single variable ¢ to represent the complete tuple of indices. For all
possible index tuples i, (Vxz); gives ai)fl . This is exactly the same as how for all

206



CHAPTER 6. DEEP FEEDFORWARD NETWORKS

possible integer indices i into a vector, (Vzz); gives 6 . Using this notation, we
can write the chain rule as it applies to tensors. If Y = g(X) and z = f(Y), then

Vxz=Y (VxY;) aay (6.47)

J

6.5.3 Recursively Applying the Chain Rule to Obtain Backprop

Using the chain rule, it is straightforward to write down an algebraic expression for
the gradient of a scalar with respect to any node in the computational graph that
produced that scalar. However, actually evaluating that expression in a computer
introduces some extra considerations.

Specifically, many subexpressions may be repeated several times within the
overall expression for the gradient. Any procedure that computes the gradient
will need to choose whether to store these subexpressions or to recompute them
several times. An example of how these repeated subexpressions arise is given in
Fig. 6.9. In some cases, computing the same subexpression twice would simply
be wasteful. For complicated graphs, there can be exponentially many of these
wasted computations, making a naive implementation of the chain rule infeasible.
In other cases, computing the same subexpression twice could be a valid way to
reduce memory consumption at the cost of higher runtime.

We first begin by a version of the back-propagation algorithm that specifies
the actual gradient computation directly (Algorithm 6.2 along with Algorithm 6.1
for the associated forward computation), in the order it will actually be done and
according to the recursive application of chain rule. One could either directly
perform these computations or view the description of the algorithm as a symbolic
specification of the computational graph for computing the back-propagation. How-
ever, this formulation does not make explicit the manipulation and the construction
of the symbolic graph that performs the gradient computation. Such a formulation
is presented below in Sec. 6.5.6, with Algorithm 6.5, where we also generalize to
nodes that contain arbitrary tensors.

First consider a computational graph describing how to compute a single scalar
4™ (say the loss on a training example). This scalar is the quantity whose
gradient we want to obtain, With respect to the n; input nodes UV to u™), In
other words we wish to compute 2 o (@) " for alli € {1,2,...,n;}. In the application
of back-propagation to computing gradients for gradlent descent over parameters,
u™ will be the cost associated with an example or a minibatch, while u(}) to ("9
correspond to the parameters of the model.
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We will assume that the nodes of the graph have been ordered in such a way
that we can compute their output one after the other, starting at u™t) and
going up to u(”) As defined in Algorithm 6.1, each node u(z) is associated with an
operation f ) and is computed by evaluating the function

u® = f(AW) (6.48)

where A® is the set of all nodes that are parents of u® .

Algorithm 6.1 A procedure that performs the computations mapping n; inputs
u™ to u™) to an output u™ . This defines a computational graph where each node
computes numerical value u(Y) by applying a function f () to the set of arguments
A that comprises the values of previous nodes u¥), j < i with j € Pa(u(i)). The
input to the computational graph is the vector &, and is set into the first n; nodes
uM) to u(™). The output of the computational graph is read off the last (output)
node u(™).

fori=1,...,n; do
ul® g,
end for
fore=n+1,...,ndo
AG) {u(j) |j € Pa(u(i))}
ul®) — f(i)(A(i))
end for
return ("

That algorithm specifies the forward propagation computation, which we could
put in a graph G. In order to perform back-propagation, we can construct a
computational graph that depends on G and adds to it an extra set of nodes. These
form a subgraph B with one node per node of G. Computation in B proceeds in

exactly the reverse of the order of computation in G, and each node of B computes
ou (™)
“ou(®
using the chain rule with respect to scalar output u™ :

the derivative associated with the forward graph node u(9. This is done

ou) Z ou ™ Jul®)

uD u® 9ud)
izjePa(u(®)

(6.49)

as specified by Algorithm 6.2. The subgraph B contains exactly one edge for each
edge from node %) to node u® of G. The edge from V) to ul® is associated with

the computation of 2 In addition, a dot product is performed for each node,

ou (J) .
between the gradient already computed with respect to nodes u' that are children
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of 49) and the vector containing the partial derivatives 2 a—m for the same children

nodes v(®. To summarize, the amount of computation required for performing
the back-propagation scales linearly with the number of edges in G, where the
computation for each edge corresponds to computing a partial derivative (of one
node with respect to one of its parents) as well as performing one multiplication
and one addition. Below, we generalize this analysis to tensor-valued nodes, which
is just a way to group multiple scalar values in the same node and enable more
efficient implementations.

Algorithm 6.2 Simplified version of the back-propagation algorithm for computing
the derivatives of u(™ with respect to the variables in the graph. This example is
intended to further understanding by showing a simplified case where all variables
are scalars, and we wish to compute the derivatives with respect to u(l), ... ,u("i).
This simplified version computes the derivatives of all nodes in the graph. The
computational cost of this algorithm is proportional to the number of edges in
the graph, assuming that the partial derivative associated with each edge requires
a constant time. This is of the same order as the number of computations for
the forward propagation. Each aﬁ“(% is a function of the parents w9 of u(9), thus
linking the nodes of the forward graph to those added for the back- propagatlon

graph.

Run forward propagation (Algorithm 6.1 for this example) to obtain the activa-
tions of the network
Initialize grad_table, a data structure that will store the derivatives that have

been computed. The entry grad table[u(?)] will store the computed value of

ou(™)
D

grad table[du™] « 1
for j =n —1down to 1 do

The next line computes g“ij) = Zi:jepa(u(i>) %“u—ggu“—& using stored values:
N1 Oul)
grad_table[ul)] « Zi:jePa(u(i>) grad_table[ul?)] el

end for
return {grad table[u)]|i=1,...,n;}

The back-propagation algorithm is designed to reduce the number of common
subexpressions without regard to memory. Specifically, it performs on the order
of one Jacobian product per node in the graph. This can be seen from the fact
in Algorithm 6.2 that backprop visits each edge from node 49 to node u(® of
the graph exactly once in order to obtain the associated partial derivative %7;((31))
Back-propagation thus avoids the exponential explosion in repeated subexpressions.
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However, other algorithms may be able to avoid more subexpressions by performing
simplifications on the computational graph, or may be able to conserve memory by
recomputing rather than storing some subexpressions. We will revisit these ideas
after describing the back-propagation algorithm itself.

6.5.4 Back-Propagation Computation in Fully-Connected MLP

To clarify the above definition of the back-propagation computation, let us consider
the specific graph associated with a fully-connected multi-layer MLP.

Algorithm 6.3 first shows the forward propagation, which maps parameters to
the supervised loss L(y, y) associated with a single (input,target) training example
(x,y), with g the output of the neural network when x is provided in input.

Algorithm 6.4 then shows the corresponding computation to be done for
applying the back-propagation algorithm to this graph.

Algorithm 6.3 and Algorithm 6.4 are demonstrations that are chosen to be
simple and straightforward to understand. However, they are specialized to one
specific problem.

Modern software implementations are based on the generalized form of back-
propagation described in Sec. 6.5.6 below, which can accommodate any computa-
tional graph by explicitly manipulating a data structure for representing symbolic
computation.

6.5.5 Symbol-to-Symbol Derivatives

Algebraic expressions and computational graphs both operate on symbols, or
variables that do not have specific values. These algebraic and graph-based
representations are called symbolic representations. When we actually use or
train a neural network, we must assign specific values to these symbols. We
replace a symbolic input to the network & with a specific numeric value, such as
[1.2,3.765, —1.8]".

Some approaches to back-propagation take a computational graph and a set
of numerical values for the inputs to the graph, then return a set of numerical
values describing the gradient at those input values. We call this approach “symbol-
to-number” differentiation. This is the approach used by libraries such as Torch

( : ) and Caffe (Jia, ).

Another approach is to take a computational graph and add additional nodes
to the graph that provide a symbolic description of the desired derivatives. This
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:
:

Figure 6.9: A computational graph that results in repeated subexpressions when computing
the gradient. Let w € R be the input to the graph. We use the same function f : R — R
as the operation that we apply at every step of a chain: x = f(w), y = f(z), 2= f(y).
To compute % , we apply Eq. 6.44 and obtain:

0z

P (6.50)
_0z0y Ox
=55 52 50 (6.51)
=f' W) f (@) f (w) (6.52)
= (fF(f ) f'(f(w))f (w) (6.53)

Eq. 6.52 suggests an implementation in which we compute the value of f(w) only once
and store it in the variable . This is the approach taken by the back-propagation
algorithm. An alternative approach is suggested by Eq. 6.53, where the subexpression
f(w) appears more than once. In the alternative approach, f(w) is recomputed each time
it is needed. When the memory required to store the value of these expressions is low,
the back-propagation approach of Eq. 6.52 is clearly preferable because of its reduced

runtime. However, Eq. 6.53 is also a valid implementation of the chain rule, and is useful
when memory is limited.
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Algorithm 6.3 Forward propagation through a typical deep neural network and
the computation of the cost function. The loss L(¥,y) depends on the output g
and on the target y (see Sec. 6.2.1.1 for examples of loss functions). To obtain the
total cost J, the loss may be added to a regularizer 2(f), where 6 contains all the
parameters (weights and biases). Algorithm 6.4 shows how to compute gradients
of J with respect to parameters W and b. For simplicity, this demonstration uses
only a single input example x. Practical applications should use a minibatch. See
Sec. 6.5.7 for a more realistic demonstration.
Require: Network depth, [
Require: W) ; ¢ {1,...,1}, the weight matrices of the model
Require: b9 i e {1,...,1}, the bias parameters of the model
Require: x, the input to process
Require: y, the target output

hO =g

for k=1,...,ldo

a® = pk) L Wk p(k-1)
) = f(a®)

end for

g = hHY

J=L(y,y) + A\Q2(0)

is the approach taken by Theano ( , : , )
and TensorFlow ( , ). An example of how this approach works
is illustrated in Fig. 6.10. The primary advantage of this approach is that
the derivatives are described in the same language as the original expression.
Because the derivatives are just another computational graph, it is possible to run
back-propagation again, differentiating the derivatives in order to obtain higher
derivatives. Computation of higher-order derivatives is described in Sec. 6.5.10.

We will use the latter approach and describe the back-propagation algorithm in
terms of constructing a computational graph for the derivatives. Any subset of the
graph may then be evaluated using specific numerical values at a later time. This
allows us to avoid specifying exactly when each operation should be computed.
Instead, a generic graph evaluation engine can evaluate every node as soon as its
parents’ values are available.

The description of the symbol-to-symbol based approach subsumes the symbol-
to-number approach. The symbol-to-number approach can be understood as
performing exactly the same computations as are done in the graph built by the
symbol-to-symbol approach. The key difference is that the symbol-to-number
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Algorithm 6.4 Backward computation for the deep neural network of Algo-
rithm 6.3, which uses in addition to the input @ a target y. This computation
yields the gradients on the activations a®) for each layer k, starting from the
output layer and going backwards to the first hidden layer. From these gradients,
which can be interpreted as an indication of how each layer’s output should change
to reduce error, one can obtain the gradient on the parameters of each layer. The
gradients on weights and biases can be immediately used as part of a stochas-
tic gradient update (performing the update right after the gradients have been
computed) or used with other gradient-based optimization methods.

After the forward computation, compute the gradient on the output layer:

for k=10,1-1,...,1do
Convert the gradient on the layer’s output into a gradient into the pre-
nonlinearity activation (element-wise multiplication if f is element-wise):
g+ Vo =g f(a®)
Compute gradients on weights and biases (including the regularization term,
where needed):
VmJ =g+ AV Q(0)
Vi wd =g hE DT L A5 00 Q(0)
Propagate the gradients w.r.t. the next lower-level hidden layer’s activations:
g < Vayu-1J = WET g

end for
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Figure 6.10: An example of the symbol-to-symbol approach to computing derivatives. In
this approach, the back-propagation algorithm does not need to ever access any actual
specific numeric values. Instead, it adds nodes to a computational graph describing how
to compute these derivatives. A generic graph evaluation engine can later compute the
derivatives for any specific numeric values. (Left) In this example, we begin with a graph
representing z = f(f( f(w))). (Right) We run the back-propagation algorithm, instructing
it to construct the graph for the expression corresponding to% . In this example, we do
not explain how the back-propagation algorithm works. The purpose is only to illustrate
what the desired result is: a computational graph with a symbolic description of the
derivative.

approach does not expose the graph.

6.5.6 General Back-Propagation

The back-propagation algorithm is very simple. To compute the gradient of some
scalar z with respect to one of its ancestors « in the graph, we begin by observing
that the gradient with respect to z is given by % = 1. We can then compute
the gradient with respect to each parent of z in the graph by multiplying the
current gradient by the Jacobian of the operation that produced z. We continue
multiplying by Jacobians traveling backwards through the graph in this way until
we reach @. For any node that may be reached by going backwards from z through
two or more paths, we simply sum the gradients arriving from different paths at
that node.

More formally, each node in the graph G corresponds to a variable. To achieve
maximum generality, we describe this variable as being a tensor V. Tensor can
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in general have any number of dimensions, and subsume scalars, vectors, and
matrices.

We assume that each variable V is associated with the following subroutines:

e get operation(V): This returns the operation that computes V, repre-
sented by the edges coming into V in the computational graph. For example,
there may be a Python or C++ class representing the matrix multiplication
operation, and the get_operation function. Suppose we have a variable that
is created by matrix multiplication, C = AB. Then get operation(V)
returns a pointer to an instance of the corresponding C-++ class.

e get consumers(V,G): This returns the list of variables that are children of
V in the computational graph G.

e get inputs(V,G): This returns the list of variables that are parents of V
in the computational graph G.

Each operation op is also associated with a bprop operation. This bprop
operation can compute a Jacobian-vector product as described by Eq. 6.47. This
is how the back-propagation algorithm is able to achieve great generality. Each
operation is responsible for knowing how to back-propagate through the edges in
the graph that it participates in. For example, we might use a matrix multiplication
operation to create a variable C' = AB. Suppose that the gradient of a scalar z with
respect to C' is given by G'. The matrix multiplication operation is responsible for
defining two back-propagation rules, one for each of its input arguments. If we call
the bprop method to request the gradient with respect to A given that the gradient
on the output is &, then the bprop method of the matrix multiplication operation
must state that the gradient with respect to A is given by GB . Likewise, if we
call the bprop method to request the gradient with respect to B, then the matrix
operation is responsible for implementing the bprop method and specifying that
the desired gradient is given by ATG. The back-propagation algorithm itself does
not need to know any differentiation rules. It only needs to call each operation’s
bprop rules with the right arguments. Formally, op.bprop (inputs, X, G) must
return

Z (Vxop.f(inputs);) G;, (6.54)
(2
which is just an implementation of the chain rule as expressed in Eq. 6.47.
Here, inputs is a list of inputs that are supplied to the operation, op.f is the
mathematical function that the operation implements, X is the input whose gradient
we wish to compute, and G is the gradient on the output of the operation.
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The op.bprop method should always pretend that all of its inputs are distinct
from each other, even if they are not. For example, if the mul operator is passed
two copies of & to compute x?, the op.bprop method should still return x as the
derivative with respect to both inputs. The back-propagation algorithm will later
add both of these arguments together to obtain 2r, which is the correct total
derivative on .

Software implementations of back-propagation usually provide both the opera-
tions and their bprop methods, so that users of deep learning software libraries are
able to back-propagate through graphs built using common operations like matrix
multiplication, exponents, logarithms, and so on. Software engineers who build a
new implementation of back-propagation or advanced users who need to add their
own operation to an existing library must usually derive the op.bprop method for
any new operations manually.

The back-propagation algorithm is formally described in Algorithm 6.5.

Algorithm 6.5 The outermost skeleton of the back-propagation algorithm. This
portion does simple setup and cleanup work. Most of the important work happens
in the build_grad subroutine of Algorithm 6.6

Require: T, the target set of variables whose gradients must be computed.
Require: G, the computational graph
Require: z, the variable to be differentiated
Let G’ be G pruned to contain only nodes that are ancestors of z and descendents
of nodes in T.
Initialize grad_table, a data structure associating tensors to their gradients
grad table[z] «+ 1
for Vin T do
build grad(V,G,G’,grad table)
end for
Return grad_table restricted to T

In Sec. 6.5.2, we motivated back-propagation as a strategy for avoiding comput-
ing the same subexpression in the chain rule multiple times. The naive algorithm
could have exponential runtime due to these repeated subexpressions. Now that
we have specified the back-propagation algorithm, we can understand its com-
putational cost. If we assume that each operation evaluation has roughly the
same cost, then we may analyze the computational cost in terms of the number
of operations executed. Keep in mind here that we refer to an operation as the
fundamental unit of our computational graph, which might actually consist of very
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Algorithm 6.6 The inner loop subroutine build grad(V,G,J,grad table) of
the back-propagation algorithm, called by the back-propagation algorithm defined
in Algorithm 6.5.

Require: V, the variable whose gradient should be added to G and grad_table.
Require: G, the graph to modify.
Require: G, the restriction of G to nodes that participate in the gradient.
Require: grad_table, a data structure mapping nodes to their gradients
if V is in grad_table then
Return grad table|[V]
end if
141
for Cin get consumers(V,F) do
op < get operation(C)
D < build grad(C,G,G’ ,grad table)
G <+ op.bprop(get inputs(C,G ),V,D)
11+ 1
end for
G+ Y,GO
grad table[V] =G
Insert G and the operations creating it into G
Return G

many arithmetic operations (for example, we might have a graph that treats matrix
multiplication as a single operation). Computing a gradient in a graph with n nodes
will never execute more than O(n?) operations or store the output of more than
O(n?) operations. Here we are counting operations in the computational graph, not
individual operations executed by the underlying hardware, so it is important to
remember that the runtime of each operation may be highly variable. For example,
multiplying two matrices that each contain millions of entries might correspond to
a single operation in the graph. We can see that computing the gradient requires as
most O(n2) operations because the forward propagation stage will at worst execute
all n nodes in the original graph (depending on which values we want to compute,
we may not need to execute the entire graph). The back-propagation algorithm
adds one Jacobian-vector product, which should be expressed with (1) nodes, per
edge in the original graph. Because the computational graph is a directed acyclic
graph it has at most O(n?) edges. For the kinds of graphs that are commonly used
in practice, the situation is even better. Most neural network cost functions are
roughly chain-structured, causing back-propagation to have O(n) cost. This is far
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better than the naive approach, which might need to execute exponentially many
nodes. This potentially exponential cost can be seen by expanding and rewriting
the recursive chain rule (Eq. 6.49) non-recursively:

ou™ E g

) > Ju (6.55)
path (u(™) 4 () (7)), k=2

from m=j to m=n

Since the number of paths from node j to node n can grow up to exponentially in the
length of these paths, the number of terms in the above sum, which is the number
of such paths, can grow exponentially with the depth of the forward propagation
graph. This large cost would be incurred because the same computation for
% would be redone many times. To avoid such recomputation, we can think
of back-propagation as a table-filling algorithm that takes advantage of storing
intermediate results gz(g)) . Each node in the graph has a corresponding slot in a
table to store the gradient for that node. By filling in these table entries in order,
back-propagation avoids repeating many common subexpressions. This table-filling

strategy is sometimes called dynamic programmaing.

6.5.7 Example: Back-Propagation for MLP Training

As an example, we walk through the back-propagation algorithm as it is used to
train a multilayer perceptron.

Here we develop a very simple multilayer perception with a single hidden
layer. To train this model, we will use minibatch stochastic gradient descent.
The back-propagation algorithm is used to compute the gradient of the cost on a
single minibatch. Specifically, we use a minibatch of examples from the training
set formatted as a design matrix X and a vector of associated class labels y.
The network computes a layer of hidden features H = max{0, X W(l)}. To
simplify the presentation we do not use biases in this model. We assume that our
graph language includes a relu operation that can compute max{0, Z} element-
wise. The predictions of the unnormalized log probabilities over classes are then
given by HW 2). We assume that our graph language includes a cross_entropy
operation that computes the cross-entropy between the targets y and the probability
distribution defined by these unnormalized log probabilities. The resulting cross-
entropy defines the cost Jyrg. Minimizing this cross-entropy performs maximum
likelihood estimation of the classifier. However, to make this example more realistic,
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Figure 6.11: The computational graph used to compute the cost used to train our example
of a single-layer MLP using the cross-entropy loss and weight decay.

we also include a regularization term. The total cost

7= hue+ A |3 (W) 4 Z (WY’ (6.56)

i,J

consists of the cross-entropy and a weight decay term with coefficient A\. The
computational graph is illustrated in Fig. 6.11.

The computational graph for the gradient of this example is large enough that
it would be tedious to draw or to read. This demonstrates one of the benefits
of the back-propagation algorithm, which is that it can automatically generate
gradients that would be straightforward but tedious for a software engineer to
derive manually.

We can roughly trace out the behavior of the back-propagation algorithm
by looking at the forward propagation graph in Fig. 6.11. To train, we wish
to compute both Vyyq)J and V2. There are two different paths leading
backward from J to the weights: one through the cross-entropy cost, and one
through the weight decay cost. The weight decay cost is relatively simple; it will
always contribute AW to the gradient on w,
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The other path through the cross-entropy cost is slightly more complicated.
Let G be the gradient on the unnormalized log probabilities U® provided by
the cross_entropy operation. The back-propagation algorithm now needs to
explore two different branches. On the shorter branch, it adds H' G to the
gradient on W ), using the back-propagation rule for the second argument to
the matrix multiplication operation. The other branch corresponds to the longer
chain descending further along the network. First, the back-propagation algorithm
computes Vi J = GW T using the back-propagation rule for the first argument
to the matrix multiplication operation. Next, the relu operation uses its back-
propagation rule to zero out components of the gradient corresponding to entries
of UM that were less than 0. Let the result be called G’. The last step of the
back-propagation algorithm is to use the back-propagation rule for the second
argument of the matmul operation to add X' G’ to the gradient on W),

After these gradients have been computed, it is the responsibility of the gradient
descent algorithm, or another optimization algorithm, to use these gradients to
update the parameters.

For the MLP, the computational cost is dominated by the cost of matrix
multiplication. During the forward propagation stage, we multiply by each weight
matrix, resulting in O(w) multiply-adds, where w is the number of weights. During
the backward propagation stage, we multiply by the transpose of each weight
matrix, which has the same computational cost. The main memory cost of the
algorithm is that we need to store the input to the nonlinearity of the hidden layer.
This value is stored from the time it is computed until the backward pass has
returned to the same point. The memory cost is thus O(mny ), where m is the
number of examples in the minibatch and n, is the number of hidden units.

6.5.8 Complications

Our description of the back-propagation algorithm here is simpler than the imple-
mentations actually used in practice.

As noted above, we have restricted the definition of an operation to be a
function that returns a single tensor. Most software implementations need to
support operations that can return more than one tensor. For example, if we wish
to compute both the maximum value in a tensor and the index of that value, it is
best to compute both in a single pass through memory, so it is most efficient to
implement this procedure as a single operation with two outputs.

We have not described how to control the memory consumption of back-
propagation. Back-propagation often involves summation of many tensors together.
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In the naive approach, each of these tensors would be computed separately, then
all of them would be added in a second step. The naive approach has an overly
high memory bottleneck that can be avoided by maintaining a single buffer and
adding each value to that buffer as it is computed.

Real-world implementations of back-propagation also need to handle various
data types, such as 32-bit floating point, 64-bit floating point, and integer values.
The policy for handling each of these types takes special care to design.

Some operations have undefined gradients, and it is important to track these
cases and determine whether the gradient requested by the user is undefined.

Various other technicalities make real-world differentiation more complicated.
These technicalities are not insurmountable, and this chapter has described the key
intellectual tools needed to compute derivatives, but it is important to be aware
that many more subtleties exist.

6.5.9 Differentiation outside the Deep Learning Community

The deep learning community has been somewhat isolated from the broader
computer science community and has largely developed its own cultural attitudes
concerning how to perform differentiation. More generally, the field of automatic
differentiation is concerned with how to compute derivatives algorithmically. The
back-propagation algorithm described here is only one approach to automatic
differentiation. It is a special case of a broader class of techniques called reverse
mode accumulation. Other approaches evaluate the subexpressions of the chain rule
in different orders. In general, determining the order of evaluation that results in
the lowest computational cost is a difficult problem. Finding the optimal sequence
of operations to compute the gradient is NP-complete ( , ), in the
sense that it may require simplifying algebraic expressions into their least expensive
form.

For example, suppose we have variables p1, po, ..., p, representing probabilities
and variables z1, 2, ..., 2z, representing unnormalized log probabilities. Suppose
we define

exp(z;

4% == .\
L Xiexp(z)

where we build the softmax function out of exponentiation, summation and division
operations, and construct a cross-entropy loss J = — > p;logg;. A human
mathematician can observe that the derivative of J with respect to z; takes a very
simple form: ¢; — p;. The back-propagation algorithm is not capable of simplifying
the gradient this way, and will instead explicitly propagate gradients through all of
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the logarithm and exponentiation operations in the original graph. Some software
libraries such as Theano ( , : , ) are able to
perform some kinds of algebraic substitution to improve over the graph proposed
by the pure back-propagation algorithm.

When the forward graph G has a single output node and each partial derivative
gzg)) can be computed with a constant amount of computation, back-propagation
guarantees that the number of computations for the gradient computation is of
the same order as the number of computations for the forward computation: this
can be seen in Algorithm 6.2 because each local partial derivative gzg)) needs
to be computed only once along with an associated multiplication and addition
for the recursive chain-rule formulation (Eq. 6.49). The overall computation is
therefore O (# edges). However, it can potentially be reduced by simplifying the
computational graph constructed by back-propagation, and this is an NP-complete
task. Implementations such as Theano and TensorFlow use heuristics based on
matching known simplification patterns in order to iteratively attempt to simplify
the graph. We defined back-propagation only for the computation of a gradient of a
scalar output but back-propagation can be extended to compute a Jacobian (either
of k different scalar nodes in the graph, or of a tensor-valued node containing k
values). A naive implementation may then need k times more computation: for
each scalar internal node in the original forward graph, the naive implementation

computes k gradients instead of a single gradient. When the number of outputs
of the graph is larger than the number of inputs, it is sometimes preferable to
use another form of automatic differentiation called forward mode accumulation.
Forward mode computation has been proposed for obtaining real-time computation
of gradients in recurrent networks, for example ( , ). This
also avoids the need to store the values and gradients for the whole graph, trading
off computational efficiency for memory. The relationship between forward mode
and backward mode is analogous to the relationship between left-multiplying versus
right-multiplying a sequence of matrices, such as

ABCD, (6.58)

where the matrices can be thought of as Jacobian matrices. For example, if D
is a column vector while A has many rows, this corresponds to a graph with a
single output and many inputs, and starting the multiplications from the end
and going backwards only requires matrix-vector products. This corresponds to
the backward mode. Instead, starting to multiply from the left would involve a
series of matrix-matrix products, which makes the whole computation much more
expensive. However, if A has fewer rows than D has columns, it is cheaper to run
the multiplications left-to-right, corresponding to the forward mode.
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In many communities outside of machine learning, it is more common to
implement differentiation software that acts directly on traditional programming
language code, such as Python or C code, and automatically generates programs
that different functions written in these languages. In the deep learning community,
computational graphs are usually represented by explicit data structures created by
specialized libraries. The specialized approach has the drawback of requiring the
library developer to define the bprop methods for every operation and limiting the
user of the library to only those operations that have been defined. However, the
specialized approach also has the benefit of allowing customized back-propagation
rules to be developed for each operation, allowing the developer to improve speed
or stability in non-obvious ways that an automatic procedure would presumably
be unable to replicate.

Back-propagation is therefore not the only way or the optimal way of computing
the gradient, but it is a very practical method that continues to serve the deep
learning community very well. In the future, differentiation technology for deep
networks may improve as deep learning practitioners become more aware of advances
in the broader field of automatic differentiation.

6.5.10 Higher-Order Derivatives

Some software frameworks support the use of higher-order derivatives. Among the
deep learning software frameworks, this includes at least Theano and TensorFlow.
These libraries use the same kind of data structure to describe the expressions for
derivatives as they use to describe the original function being differentiated. This
means that the symbolic differentiation machinery can be applied to derivatives.

In the context of deep learning, it is rare to compute a single second derivative
of a scalar function. Instead, we are usually interested in properties of the Hessian
matrix. If we have a function f : R"™ — R, then the Hessian matrix is of size n X n.
In typical deep learning applications, n will be the number of parameters in the
model, which could easily number in the billions. The entire Hessian matrix is
thus infeasible to even represent.

Instead of explicitly computing the Hessian, the typical deep learning approach
is to use Krylov methods. Krylov methods are a set of iterative techniques for
performing various operations like approximately inverting a matrix or finding
approximations to its eigenvectors or eigenvalues, without using any operation
other than matrix-vector products.

In order to use Krylov methods on the Hessian, we only need to be able to
compute the product between the Hessian matrix H and an arbitrary vector v. A
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straightforward technique ( , ) for doing so is to compute
Hv=V4|(Vaf(z)) v|. (6.59)

Both of the gradient computations in this expression may be computed automati-
cally by the appropriate software library. Note that the outer gradient expression
takes the gradient of a function of the inner gradient expression.

If v is itself a vector produced by a computational graph, it is important to
specify that the automatic differentiation software should not differentiate through
the graph that produced v.

While computing the Hessian is usually not advisable, it is possible to do with
Hessian vector products. One simply computes H e forall i = 1,...,n, where

e(?) is the one-hot vector with egz) = 1 and all other entries equal to 0.

6.6 Historical Notes

Feedforward networks can be seen as efficient nonlinear function approximators
based on using gradient descent to minimize the error in a function approximation.
From this point of view, the modern feedforward network is the culmination of
centuries of progress on the general function approximation task.

The chain rule that underlies the back-propagation algorithm was invented
in the 17th century ( , ; , ). Calculus and algebra have
long been used to solve optimization problems in closed form, but gradient descent
was not introduced as a technique for iteratively approximating the solution to
optimization problems until the 19th century ( , ).

Beginning in the 1940s, these function approximation techniques were used to
motivate machine learning models such as the perceptron. However, the earliest
models were based on linear models. Critics including Marvin Minsky pointed
out several of the flaws of the linear model family, such as it inability to learn the
XOR function, which led to a backlash against the entire neural network approach.

Learning nonlinear functions required the development of a multilayer per-
ceptron and a means of computing the gradient through such a model. Efficient
applications of the chain rule based on dynamic programming began to appear in the
1960s and 1970s, mostly for control applications ( ) ; ,

: , : , : , ) but also for sensitivity
analysis ( , ). ( ) proposed applying these techniques
to training artificial neural networks. The idea was finally developed in practice
after being independently rediscovered in different ways ( , ; ,
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: , ). The book Parallel Distributed Processing presented
the results of some of the first successful experiments with back-propagation in a
chapter ( , ) that contributed greatly to the popularization
of back-propagation and initiated a very active period of research in multi-layer
neural networks. However, the ideas put forward by the authors of that book
and in particular by Rumelhart and Hinton go much beyond back-propagation.
They include crucial ideas about the possible computational implementation of
several central aspects of cognition and learning, which came under the name of
“connectionism” because of the importance given the connections between neurons
as the locus of learning and memory. In particular, these ideas include the notion
of distributed representation ( : ).

Following the success of back-propagation, neural network research gained pop-
ularity and reached a peak in the early 1990s. Afterwards, other machine learning
techniques became more popular until the modern deep learning renaissance that
began in 2006.

The core ideas behind modern feedforward networks have not changed sub-
stantially since the 1980s. The same back-propagation algorithm and the same
approaches to gradient descent are still in use. Most of the improvement in neural
network performance from 1986 to 2015 can be attributed to two factors. First,
larger datasets have reduced the degree to which statistical generalization is a
challenge for neural networks. Second, neural networks have become much larger,
due to more powerful computers, and better software infrastructure. However, a
small number of algorithmic changes have improved the performance of neural
networks noticeably.

One of these algorithmic changes was the replacement of mean squared error
with the cross-entropy family of loss functions. Mean squared error was popular in
the 1980s and 1990s, but was gradually replaced by cross-entropy losses and the
principle of maximum likelihood as ideas spread between the statistics community
and the machine learning community. The use of cross-entropy losses greatly
improved the performance of models with sigmoid and softmax outputs, which
had previously suffered from saturation and slow learning when using the mean
squared error loss.

The other major algorithmic change that has greatly improved the performance
of feedforward networks was the replacement of sigmoid hidden units with piecewise
linear hidden units, such as rectified linear units. Rectification using the max{0, z}
function was introduced in early neural network models and dates back at least
as far as the Cognitron and Neocognitron ( : , ). These early
models did not use rectified linear units, but instead applied rectification to
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nonlinear functions. Despite the early popularity of rectification, rectification was
largely replaced by sigmoids in the 1980s, perhaps because sigmoids perform better
when neural networks are very small. As of the early 2000s, rectified linear units
were avoided due to a somewhat superstitious belief that activation functions with
non-differentiable points must be avoided. This began to change in about 2009.

( ) observed that “using a rectifying nonlinearity is the single most
important factor in improving the performance of a recognition system” among
several different factors of neural network architecture design.

For small datasets, ( ) observed that using rectifying non-
linearities is even more important than learning the weights of the hidden layers.
Random weights are sufficient to propagate useful information through a rectified
linear network, allowing the classifier layer at the top to learn how to map different
feature vectors to class identities.

When more data is available, learning begins to extract enough useful knowledge
to exceed the performance of randomly chosen parameters. ( )
showed that learning is far easier in deep rectified linear networks than in deep
networks that have curvature or two-sided saturation in their activation functions.

Rectified linear units are also of historical interest because they show that
neuroscience has continued to have an influence on the development of deep
learning algorithms. ( ) motivate rectified linear units from
biological considerations. The half-rectifying nonlinearity was intended to capture
these properties of biological neurons: 1) For some inputs, biological neurons are
completely inactive. 2) For some inputs, a biological neuron’s output is proportional
to its input. 3) Most of the time, biological neurons operate in the regime where
they are inactive (i.e., they should have sparse activations).

When the modern resurgence of deep learning began in 2006, feedforward
networks continued to have a bad reputation. From about 2006-2012, it was widely
believed that feedforward networks would not perform well unless they were assisted
by other models, such as probabilistic models. Today, it is now known that with the
right resources and engineering practices, feedforward networks perform very well.
Today, gradient-based learning in feedforward networks is used as a tool to develop
probabilistic models, such as the variational autoencoder and generative adversarial
networks, described in Chapter 20. Rather than being viewed as an unreliable
technology that must be supported by other techniques, gradient-based learning in
feedforward networks has been viewed since 2012 as a powerful technology that
may be applied to many other machine learning tasks. In 2006, the community
used unsupervised learning to support supervised learning, and now, ironically, it
is more common to use supervised learning to support unsupervised learning.
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Feedforward networks continue to have unfulfilled potential. In the future, we
expect they will be applied to many more tasks, and that advances in optimization
algorithms and model design will improve their performance even further. This
chapter has primarily described the neural network family of models. In the
subsequent chapters, we turn to how to use these models—how to regularize and
train them.
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Chapter 7

Regularization for Deep Learning

A central problem in machine learning is how to make an algorithm that will
perform well not just on the training data, but also on new inputs. Many strategies
used in machine learning are explicitly designed to reduce the test error, possibly
at the expense of increased training error. These strategies are known collectively
as regularization. As we will see there are a great many forms of regularization
available to the deep learning practitioner. In fact, developing more effective
regularization strategies has been one of the major research efforts in the field.

Chapter 5 introduced the basic concepts of generalization, underfitting, overfit-
ting, bias, variance and regularization. If you are not already familiar with these
notions, please refer to that chapter before continuing with this one.

In this chapter, we describe regularization in more detail, focusing on regular-
ization strategies for deep models or models that may be used as building blocks
to form deep models.

Some sections of this chapter deal with standard concepts in machine learning.
If you are already familiar with these concepts, feel free to skip the relevant
sections. However, most of this chapter is concerned with the extension of these
basic concepts to the particular case of neural networks.

In Sec. 5.2.2, we defined regularization as “any modification we make to a
learning algorithm that is intended to reduce its generalization error but not
its training error.” There are many regularization strategies. Some put extra
constraints on a machine learning model, such as adding restrictions on the
parameter values. Some add extra terms in the objective function that can be
thought of as corresponding to a soft constraint on the parameter values. If chosen
carefully, these extra constraints and penalties can lead to improved performance
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on the test set. Sometimes these constraints and penalties are designed to encode
specific kinds of prior knowledge. Other times, these constraints and penalties
are designed to express a generic preference for a simpler model class in order to
promote generalization. Sometimes penalties and constraints are necessary to make
an underdetermined problem determined. Other forms of regularization, known as
ensemble methods, combine multiple hypotheses that explain the training data.

In the context of deep learning, most regularization strategies are based on
regularizing estimators. Regularization of an estimator works by trading increased
bias for reduced variance. An effective regularizer is one that makes a profitable
trade, reducing variance significantly while not overly increasing the bias. When
we discussed generalization and overfitting in Chapter 5, we focused on three
situations, where the model family being trained either (1) excluded the true
data generating process—corresponding to underfitting and inducing bias, or (2)
matched the true data generating process, or (3) included the generating process
but also many other possible generating processes—the overfitting regime where
variance rather than bias dominates the estimation error. The goal of regularization
is to take a model from the third regime into the second regime.

In practice, an overly complex model family does not necessarily include the
target function or the true data generating process, or even a close approximation
of either. We almost never have access to the true data generating process so
we can never know for sure if the model family being estimated includes the
generating process or not. However, most applications of deep learning algorithms
are to domains where the true data generating process is almost certainly outside
the model family. Deep learning algorithms are typically applied to extremely
complicated domains such as images, audio sequences and text, for which the true
generation process essentially involves simulating the entire universe. To some
extent, we are always trying to fit a square peg (the data generating process) into
a round hole (our model family).

What this means is that controlling the complexity of the model is not a
simple matter of finding the model of the right size, with the right number of
parameters. Instead, we might find—and indeed in practical deep learning scenarios,
we almost always do find—that the best fitting model (in the sense of minimizing
generalization error) is a large model that has been regularized appropriately.

We now review several strategies for how to create such a large, deep, regularized
model.
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7.1 Parameter Norm Penalties

Regularization has been used for decades prior to the advent of deep learning. Linear
models such as linear regression and logistic regression allow simple, straightforward,
and effective regularization strategies.

Many regularization approaches are based on limiting the capacity of models,
such as neural networks, linear regression, or logistic regression, by adding a pa-
rameter norm penalty €2(0) to the objective function J. We denote the regularized

objective function by J:

J(0: X,y) = J(6; X, y) + aQ(6) (7.1)

where « € [0,00) is a hyperparameter that weights the relative contribution of
the norm penalty term, €, relative to the standard objective function J(x; ).
Setting « to 0 results in no regularization. Larger values of o correspond to more
regularization.

When our training algorithm minimizes the regularized objective function J it
will decrease both the original objective J on the training data and some measure
of the size of the parameters 6 (or some subset of the parameters). Different
choices for the parameter norm €2 can result in different solutions being preferred.
In this section, we discuss the effects of the various norms when used as penalties
on the model parameters.

Before delving into the regularization behavior of different norms, we note that
for neural networks, we typically choose to use a parameter norm penalty (2 that
penalizes only the weights of the affine transformation at each layer and leaves
the biases unregularized. The biases typically require less data to fit accurately
than the weights. Each weight specifies how two variables interact. Fitting the
weight well requires observing both variables in a variety of conditions. Each
bias controls only a single variable. This means that we do not induce too much
variance by leaving the biases unregularized. Also, regularizing the bias parameters
can introduce a significant amount of underfitting. We therefore use the vector w
to indicate all of the weights that should be affected by a norm penalty, while the
vector 6 denotes all of the parameters, including both w and the unregularized
parameters.

In the context of neural networks, it is sometimes desirable to use a separate
penalty with a different a coefficient for each layer of the network. Because it can
be expensive to search for the correct value of multiple hyperparameters, it is still
reasonable to use the same weight decay at all layers just to reduce the size of
search space.
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7.1.1 [? Parameter Regularization

We have already seen, in Sec. 5.2.2, one of the simplest and most common kinds
of parameter norm penalty: the L? parameter norm penalty commonly known as
weight decay. This regularization strategy drives the weights closer to the origin'
by adding a regularization term () = 4|jwl|3 to the objective function. In
other academic communities, L? regularization is also known as ridge regression or

Tikhonov regularization.

We can gain some insight into the behavior of weight decay regularization
by studying the gradient of the regularized objective function. To simplify the
presentation, we assume no bias parameter, so 8 is just w. Such a model has the
following total objective function:

J(wi X, y) = 5w w+ J(w; X, y), (7.2)

with the corresponding parameter gradient

Vuwd(w; X, y) = aw + VJ (w; X, y). (7.3)
To take a single gradient step to update the weights, we perform this update:
w4 w —€(aw+ V. J(w; X, y)). (7.4)
Written another way, the update is:
w <+ (1 —ea)w — eVyJ(w; X, y). (7.5)

We can see that the addition of the weight decay term has modified the learning
rule to multiplicatively shrink the weight vector by a constant factor on each step,
just before performing the usual gradient update. This describes what happens in
a single step. But what happens over the entire course of training?

We will further simplify the analysis by making a quadratic approximation
to the objective function in the neighborhood of the value of the weights that
obtains minimal unregularized training cost, w* = argmin,, J(w). If the objective
function is truly quadratic, as in the case of fitting a linear regression model with

! More generally, we could regularize the parameters to be near any specific point in space
and, surprisingly, still get a regularization effect, but better results will be obtained for a value
closer to the true one, with zero being a default value that makes sense when we do not know if
the correct value should be positive or negative. Since it is far more common to regularize the
model parameters towards zero, we will focus on this special case in our exposition.
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mean squared error, then the approximation is perfect. The approximation J is
given by

J(0) = J(w") +—;(w—'w*)TH('w—w*), (7.6)

where H is the Hessian matrix of J with respect to w evaluated at w*. There is
no first-order term in this quadratic approximation, because w* is defined to be a
minimum, where the gradient vanishes. Likewise, because w* is the location of a
minimum of J, we can conclude that H is positive semidefinite.

The minimum of .J occurs where its gradient
Vwd (w) = H(w — w) (7.7)

is equal to 0.

To study the effect of weight decay, we modify Eq. 7.7 by adding the weight
decay gradient. We can now solve for the minimum of the regularized version of J.
We use the variable w to represent the location of the minimum.

aw+ H(w—w') =0 (7.8)
(H + ol)w = Hw" :
W= (H +aol) ' Hw*, (7.10)

As « approaches 0, the regularized solution w approaches w*. But what
happens as a grows? Because H is real and symmetric, we can decompose it
into a diagonal matrix A and an orthonormal basis of eigenvectors, @), such that
H=QAQ". Applying the decomposition to Eq.7.10, we obtain:

w=(QAQ" +al) 'QAQ 'w* (7.11)
- [Q(A + aI)QT] - QAQ' w* (7.12)
= QA+ al) 'AQ T w*. (7.13)

We see that the effect of weight decay is to rescale w* along the axes defined by
the eigenvectors of H. Specifically, the component of w* that is aligned with the
1-th eigenvector of H is rescaled by a factor of ﬁ_—a (You may wish to review
how this kind of scaling works, first explained in Fig. 2.3).

Along the directions where the eigenvalues of H are relatively large, for example,
where \; > «, the effect of regularization is relatively small. However, components

with A\; < a will be shrunk to have nearly zero magnitude. This effect is illustrated
in Fig. 7.1.
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Figure 7.1: An illustration of the effect of L? (or weight decay) regularization on the value

of the optimal w. The solid ellipses represent contours of equal value of the unregularized
objective. The dotted circles represent contours of equal value of the [? regularizer. At

the point w, these competing objectives reach an equilibrium. In the first dimension, the
eigenvalue of the Hessian of J is small. The objective function does not increase much

when moving horizontally away from w*. Because the objective function does not express

a strong preference along this direction, the regularizer has a strong effect on this axis.
The regularizer pulls w; close to zero. In the second dimension, the objective function

is very sensitive to movements away from w*. The corresponding eigenvalue is large,
indicating high curvature. As a result, weight decay affects the position ofws relatively

little.

Only directions along which the parameters contribute significantly to reducing
the objective function are preserved relatively intact. In directions that do not
contribute to reducing the objective function, a small eigenvalue of the Hessian
tells us that movement in this direction will not significantly increase the gradient.
Components of the weight vector corresponding to such unimportant directions
are decayed away through the use of the regularization throughout training.

So far we have discussed weight decay in terms of its effect on the optimization
of an abstract, general, quadratic cost function. How do these effects relate to
machine learning in particular? We can find out by studying linear regression, a
model for which the true cost function is quadratic and therefore amenable to the
same kind of analysis we have used so far. Applying the analysis again, we will
be able to obtain a special case of the same results, but with the solution now
phrased in terms of the training data. For linear regression, the cost function is
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the sum of squared errors:
(Xw—y) (Xw—y). (7.14)
When we add L? regularization, the objective function changes to
(Xw—y)" (Xw —y)—l——;awTw. (7.15)
This changes the normal equations for the solution from
w=(X"X)"'XTy (7.16)

to
w=(X"X+al) X Ty. (7.17)

The matrix X 'X in Eq. 7.16 is proportional to the covariance matrix %XTX.

Using L2 regularization replaces this matrix with (XTX + aI)_l in Eq. 7.17.
The new matrix is the same as the original one, but with the addition of a to the
diagonal. The diagonal entries of this matrix correspond to the variance of each
input feature. We can see that L? regularization causes the learning algorithm
to “perceive” the input X as having higher variance, which makes it shrink the
weights on features whose covariance with the output target is low compared to
this added variance.

7.1.2 L' Regularization

While L? weight decay is the most common form of weight decay, there are other
ways to penalize the size of the model parameters. Another option is to use L'
regularization.

Formally, L' regularization on the model parameter w is defined as:

2(0) = |lwlh = Z!wih (7.18)

that is, as the sum of absolute values of the individual parameters.”? We will
now discuss the effect of L' regularization on the simple linear regression model,
with no bias parameter, that we studied in our analysis of L? regularization. In
particular, we are interested in delineating the differences between L' and L? forms

2 As with L? regularization, we could regularize the parameters towards a value that is not
zero, but instead towards some parameter value w?. Tn that case the L' regularization would
introduce the term Q(8) = ||w — w'? ||y = 3, |w; — w!”|.
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of regularization. As with L? weight decay, L weight decay controls the strength
of the regularization by scaling the penalty {2 using a positive hyperparameter a.
Thus, the regularized objective function J(w; X, vy) is given by

J(w; X, y) = aljwlh +J(w; X, y), (7.19)

with the corresponding gradient (actually, sub-gradient):

Vwd (w; X, y) = asign(w) + VuJ (X, y; w) (7.20)

where sign(w) is simply the sign of w applied element-wise.

By inspecting Eq. 7.20, we can see immediately that the effect of L' regu-
larization is quite different from that of L? regularization. Specifically, we can
see that the regularization contribution to the gradient no longer scales linearly
with each w;; instead it is a constant factor with a sign equal to sign(w;). One
consequence of this form of the gradient is that we will not necessarily see clean
algebraic solutions to quadratic approximations of J(X,y;w) as we did for I?
regularization.

Our simple linear model has a quadratic cost function that we can represent
via its Taylor series. Alternately, we could imagine that this is a truncated Taylor
series approximating the cost function of a more sophisticated model. The gradient
in this setting is given by

Vwd (w) = H(w — w*), (7.21)
where, again, H is the Hessian matrix of J with respect to w evaluated at w*.

Because the L! penalty does not admit clean algebraic expressions in the case
of a fully general Hessian, we will also make the further simplifying assumption
that the Hessian is diagonal, H = diag([Hi1,..., Hun]), where each H;; > 0.
This assumption holds if the data for the linear regression problem has been
preprocessed to remove all correlation between the input features, which may be
accomplished using PCA.

Our quadratic approximation of the L! regularized objective function decom-
poses into a sum over the parameters:

. 1
J(w; X, y) = J(w; X, y) + Z {EHH(wZ —wi P + oz]wﬂ} . (7.22)

The problem of minimizing this approximate cost function has an analytical solution
(for each dimension ), with the following form:

w; = sign(wf‘)max{\wﬂ - ;',O} : (7.23)
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Consider the situation where wj > 0 for all i. There are two possible outcomes:

1. The case where w; < % Here the optimal value of w; under the regularized

objective is simply w; = 0. This occurs because the contribution of J (w; X, y)

to the regularized objective J (w; X, y) is overwhelmed—in direction i—by
the L' regularization which pushes the value of w; to zero.

2. The case where w; > 4~ In this case, the regularization does not move the
optimal value of w; to zero but instead it just shifts it in that direction by a
distance equal to 47-.

A similar process happens when w? < 0, but with the L! penalty making w; less
negative by %, or 0.

In comparison to L? regularization, L' regularization results in a solution that
is more sparse. Sparsity in this context refers to the fact that some parameters
have an optimal value of zero. The sparsity of L' regularization is a qualitatively
different behavior than arises with L? regularization. Eq. 7.13 gave the solution
w for I? regularization. If we revisit that equation using the assumption of a
diagonal and positive definite Hessian H that we introduced for our analysis of L!
regularization, we find that w; = Hflzjra w; . If wf was nonzero, then w; remains
nonzero. This demonstrates that L? regularization does not cause the parameters
to become sparse, while L' regularization may do so for large enough c.

The sparsity property induced by L! regularization has been used extensively
as a feature selection mechanism. Feature selection simplifies a machine learning
problem by choosing which subset of the available features should be used. In
particular, the well known LASSO ( : ) (least absolute shrinkage and
selection operator) model integrates an L' penalty with a linear model and a least
squares cost function. The L' penalty causes a subset of the weights to become
zero, suggesting that the corresponding features may safely be discarded.

In Sec. 5.6.1, we saw that many regularization strategies can be interpreted as
MAP Bayesian inference, and that in particular, L? regularization is equivalent
to MAP Bayesian inference with a Gaussian prior on the weights. For L! regu-
larization, the penalty aQ(w) = a >, |w;| used to regularize a cost function is
equivalent to the log-prior term that is maximized by MAP Bayesian inference
when the prior is an isotropic Laplace distribution (Eq. 3.26) over w € R":

log p(w) = Zlog Laplace(w,; 0, ;) = —al|lw||; + nlog a — nlog?2. (7.24)
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From the point of view of learning via maximization with respect to w, we can
ignore the log a — log 2 terms because they do not depend on w.

7.2 Norm Penalties as Constrained Optimization

Consider the cost function regularized by a parameter norm penalty:

J(0; X,y)=J(0; X,y)+ a2(0). (7.25)

Recall from Sec. 4.4 that we can minimize a function subject to constraints by
constructing a generalized Lagrange function, consisting of the original objective
function plus a set of penalties. Each penalty is a product between a coefficient,
called a Karush-Kuhn—Tucker (KKT) multiplier, and a function representing
whether the constraint is satisfied. If we wanted to constrain () to be less than
some constant k, we could construct a generalized Lagrange function

L6, 05X, y) = J(6; X, y) + a(2(6) — k). (7.26)
The solution to the constrained problem is given by

0" = arg min max £(60, «). (7.27)

0 a,a>0

As described in Sec. 4.4, solving this problem requires modifying both @ and
a. Sec. 4.5 provides a worked example of linear regression with an I, constraint.
Many different procedures are possible—some may use gradient descent, while
others may use analytical solutions for where the gradient is zero—but in all
procedures o must increase whenever (6) > k and decrease whenever Q(6) < k.
All positive a encourage §2(6) to shrink. The optimal value o will encourage ()
to shrink, but not so strongly to make ©(€) become less than k.

To gain some insight into the effect of the constraint, we can fix a* and view
the problem as just a function of 8:

0" = argmin £(0, ") = argmin J(0; X, y) + a*Q(0). (7.28)
6 6

This is exactly the same as the regularized training problem of minimizing J.
We can thus think of a parameter norm penalty as imposing a constraint on the
weights. If © is the L? norm, then the weights are constrained to lie in an I?
ball. If Q is the L! norm, then the weights are constrained to lie in a region of
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limited L' norm. Usually we do not know the size of the constraint region that we
impose by using weight decay with coefficient a* because the value of a* does not
directly tell us the value of k. In principle, one can solve for k, but the relationship
between k and o depends on the form of J. While we do not know the exact size
of the constraint region, we can control it roughly by increasing or decreasing «
in order to grow or shrink the constraint region. Larger o will result in a smaller
constraint region. Smaller a will result in a larger constraint region.

Sometimes we may wish to use explicit constraints rather than penalties. As
described in Sec. 4.4, we can modify algorithms such as stochastic gradient descent
to take a step downhill on J(#) and then project 8 back to the nearest point
that satisfies (@) < k. This can be useful if we have an idea of what value of k
is appropriate and do not want to spend time searching for the value of o that
corresponds to this k.

Another reason to use explicit constraints and reprojection rather than enforcing
constraints with penalties is that penalties can cause non-convex optimization
procedures to get stuck in local minima corresponding to small 8. When training
neural networks, this usually manifests as neural networks that train with several
“dead units.” These are units that do not contribute much to the behavior of the
function learned by the network because the weights going into or out of them are
all very small. When training with a penalty on the norm of the weights, these
configurations can be locally optimal, even if it is possible to significantly reduce
J by making the weights larger. Explicit constraints implemented by re-projection
can work much better in these cases because they do not encourage the weights
to approach the origin. Explicit constraints implemented by re-projection only
have an effect when the weights become large and attempt to leave the constraint
region.

Finally, explicit constraints with reprojection can be useful because they impose
some stability on the optimization procedure. When using high learning rates, it
is possible to encounter a positive feedback loop in which large weights induce
large gradients which then induce a large update to the weights. If these updates
consistently increase the size of the weights, then 8 rapidly moves away from
the origin until numerical overflow occurs. Explicit constraints with reprojection
prevent this feedback loop from continuing to increase the magnitude of the weights
without bound. ( ) recommend using constraints combined with
a high learning rate to allow rapid exploration of parameter space while maintaining
some stability.

In particular, ( ) recommend a strategy introduced by
( ): constraining the norm of each column of the weight matrix
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of a neural net layer, rather than constraining the Frobenius norm of the entire
weight matrix. Constraining the norm of each column separately prevents any one
hidden unit from having very large weights. If we converted this constraint into a
penalty in a Lagrange function, it would be similar to L? weight decay but with a
separate KK'T multiplier for the weights of each hidden unit. Each of these KKT
multipliers would be dynamically updated separately to make each hidden unit
obey the constraint. In practice, column norm limitation is always implemented as
an explicit constraint with reprojection.

7.3 Regularization and Under-Constrained Problems

In some cases, regularization is necessary for machine learning problems to be prop-
erly defined. Many linear models in machine learning, including linear regression
and PCA, depend on inverting the matrix X" X. This is not possible whenever
X" X is singular. This matrix can be singular whenever the data generating distri-
bution truly has no variance in some direction, or when no variance in observed
in some direction because there are fewer examples (rows of X ) than input features
(columns of X'). In this case, many forms of regularization correspond to inverting
X" X + oI instead. This regularized matrix is guaranteed to be invertible.

These linear problems have closed form solutions when the relevant matrix
is invertible. It is also possible for a problem with no closed form solution to be
underdetermined. An example is logistic regression applied to a problem where
the classes are linearly separable. If a weight vector w is able to achieve perfect
classification, then 2w will also achieve perfect classification and higher likelihood.
An iterative optimization procedure like stochastic gradient descent will continually
increase the magnitude of w and, in theory, will never halt. In practice, a numerical
implementation of gradient descent will eventually reach sufficiently large weights
to cause numerical overflow, at which point its behavior will depend on how the
programmer has decided to handle values that are not real numbers.

Most forms of regularization are able to guarantee the convergence of iterative
methods applied to underdetermined problems. For example, weight decay will
cause gradient descent to quit increasing the magnitude of the weights when the
slope of the likelihood is equal to the weight decay coefficient.

The idea of using regularization to solve underdetermined problems extends
beyond machine learning. The same idea is useful for several basic linear algebra
problems.

As we saw in Sec. 2.9, we can solve underdetermined linear equations using
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the Moore-Penrose pseudoinverse. Recall that one definition of the pseudoinverse
X" of a matrix X is

Xt =1lim(X'X +al)"1XT. (7.29)
a\,0
We can now recognize Eq. 7.29 as performing linear regression with weight decay.
Specifically, Eq. 7.29 is the limit of Eq. 7.17 as the regularization coefficient shrinks
to zero. We can thus interpret the pseudoinverse as stabilizing underdetermined
problems using regularization.

7.4 Dataset Augmentation

The best way to make a machine learning model generalize better is to train it on
more data. Of course, in practice, the amount of data we have is limited. One way
to get around this problem is to create fake data and add it to the training set.
For some machine learning tasks, it is reasonably straightforward to create new
fake data.

This approach is easiest for classification. A classifier needs to take a compli-
cated, high dimensional input & and summarize it with a single category identity y.
This means that the main task facing a classifier is to be invariant to a wide variety
of transformations. We can generate new (x,y) pairs easily just by transforming
the & inputs in our training set.

This approach is not as readily applicable to many other tasks. For example, it
is difficult to generate new fake data for a density estimation task unless we have
already solved the density estimation problem.

Dataset augmentation has been a particularly effective technique for a specific
classification problem: object recognition. Images are high dimensional and include
an enormous variety of factors of variation, many of which can be easily simulated.
Operations like translating the training images a few pixels in each direction can
often greatly improve generalization, even if the model has already been designed to
be partially translation invariant by using the convolution and pooling techniques
described in Chapter 9. Many other operations such as rotating the image or
scaling the image have also proven quite effective.

One must be careful not to apply transformations that would change the correct
class. For example, optical character recognition tasks require recognizing the
difference between ‘b’ and ‘d’ and the difference between ‘6’ and ‘9’, so horizontal
flips and 180° rotations are not appropriate ways of augmenting datasets for these
tasks.
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There are also transformations that we would like our classifiers to be invariant
to, but which are not easy to perform. For example, out-of-plane rotation can not
be implemented as a simple geometric operation on the input pixels.

Dataset augmentation is effective for speech recognition tasks as well (
: ).

Injecting noise in the input to a neural network ( : )
can also be seen as a form of data augmentation. For many classification and
even some regression tasks, the task should still be possible to solve even if small
random noise is added to the input. Neural networks prove not to be very robust
to noise, however ( , ). One way to improve the robustness
of neural networks is simply to train them with random noise applied to their
inputs. Input noise injection is part of some unsupervised learning algorithms such
as the denoising autoencoder ( : ). Noise injection also works
when the noise is applied to the hidden units, which can be seen as doing dataset
augmentation at multiple levels of abstraction. ( ) recently showed
that this approach can be highly effective provided that the magnitude of the
noise is carefully tuned. Dropout, a powerful regularization strategy that will be
described in Sec. 7.12, can be seen as a process of constructing new inputs by
multiplying by noise.

When comparing machine learning benchmark results, it is important to take
the effect of dataset augmentation into account. Often, hand-designed dataset
augmentation schemes can dramatically reduce the generalization error of a machine
learning technique. To compare the performance of one machine learning algorithm
to another, it is necessary to perform controlled experiments. When comparing
machine learning algorithm A and machine learning algorithm B, it is necessary
to make sure that both algorithms were evaluated using the same hand-designed
dataset augmentation schemes. Suppose that algorithm A performs poorly with
no dataset augmentation and algorithm B performs well when combined with
numerous synthetic transformations of the input. In such a case it is likely the
synthetic transformations caused the improved performance, rather than the use
of machine learning algorithm B. Sometimes deciding whether an experiment
has been properly controlled requires subjective judgment. For example, machine
learning algorithms that inject noise into the input are performing a form of dataset
augmentation. Usually, operations that are generally applicable (such as adding
Gaussian noise to the input) are considered part of the machine learning algorithm,
while operations that are specific to one application domain (such as randomly
cropping an image) are considered to be separate pre-processing steps.
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7.5 Noise Robustness

Sec. 7.4 has motivated the use of noise applied to the inputs as a dataset aug-
mentation strategy. For some models, the addition of noise with infinitesimal
variance at the input of the model is equivalent to imposing a penalty on the
norm of the weights ( , ,b). In the general case, it is important to
remember that noise injection can be much more powerful than simply shrinking
the parameters, especially when the noise is added to the hidden units. Noise
applied to the hidden units is such an important topic as to merit its own separate
discussion; the dropout algorithm described in Sec. 7.12 is the main development
of that approach.

Another way that noise has been used in the service of regularizing models
is by adding it to the weights. This technique has been used primarily in the
context of recurrent neural networks ( , ; , ). This can
be interpreted as a stochastic implementation of a Bayesian inference over the
weights. The Bayesian treatment of learning would consider the model weights
to be uncertain and representable via a probability distribution that reflects this
uncertainty. Adding noise to the weights is a practical, stochastic way to reflect
this uncertainty ( : ).

This can also be interpreted as equivalent (under some assumptions) to a
more traditional form of regularization. Adding noise to the weights has been
shown to be an effective regularization strategy in the context of recurrent neural
networks ( , : , ). In the following, we will present an
analysis of the effect of weight noise on a standard feedforward neural network (as
introduced in Chapter 6).

We study the regression setting, where we wish to train a function g(x) that
maps a set of features x to a scalar using the least-squares cost function between
the model predictions g(x) and the true values y:

J=Epay [(0(®) —y)]. (7.30)

The training set consists of m labeled examples { (1) (1) . (™), 4™)}.

We now assume that with each input presentation we also include a random
perturbation ey ~ N(€; 0,nI) of the network weights. Let us imagine that we
have a standard [-layer MLP. We denote the perturbed model as g, (x). Despite
the injection of noise, we are still interested in minimizing the squared error of the
output of the network. The objective function thus becomes:

jW - Ep(a:,y,ew) (Qew (w) - y)Q] (731)
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= Ep(w,y,ew) [QEW (iI}) - zerW (313) + yQ} . (732)

For small 7, the minimization of J with added weight noise (with covariance
nI) is equivalent to minimization of J with an additional regularization term:
"By [IVwd(z)|P]. This form of regularization encourages the parameters to
go to regions of parameter space where small perturbations of the weights have
a relatively small influence on the output. In other words, it pushes the model
into regions where the model is relatively insensitive to small variations in the
weights, finding points that are not merely minima, but minima surrounded by
flat regions ( , ). In the simplified case of linear
regression (where, for instance, §j(z) = w '« +b), this regularization term collapses
into NE ) [ll2||?], which is not a function of parameters and therefore does not

contribute to the gradient of Jy with respect to the model parameters.

7.5.1 Injecting Noise at the Output Targets

Most datasets have some amount of mistakes in the y labels. It can be harmful
to maximize logp(y | ) when y is a mistake. One way to prevent this is to
explicitly model the noise on the labels. For example, we can assume that for some
small constant ¢, the training set label y is correct with probability 1 — €, and
otherwise any of the other possible labels might be correct. This assumption is
easy to incorporate into the cost function analytically, rather than by explicitly
drawing noise samples. For example, label smoothing regularizes a model based
on a softmax with k output values by replacing the hard 0 and 1 classification
targets with targets of 7 and 1— %e, respectively. The standard cross-entropy
loss may then be used with these soft targets. Maximum likelihood learning with a
softmax classifier and hard targets may actually never converge—the softmax can
never predict a probability of exactly 0 or exactly 1, so it will continue to learn
larger and larger weights, making more extreme predictions forever. It is possible
to prevent this scenario using other regularization strategies like weight decay.
Label smoothing has the advantage of preventing the pursuit of hard probabilities
without discouraging correct classification. This strategy has been used since
the 1980s and continues to be featured prominently in modern neural networks

( , 2019).

7.6 Semi-Supervised Learning

In the paradigm of semi-supervised learning, both unlabeled examples from P(x)
and labeled examples from P(x,y) are used to estimate P (y | X) or predict y from
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In the context of deep learning, semi-supervised learning usually refers to
learning a representation h = f(x). The goal is to learn a representation so
that examples from the same class have similar representations. Unsupervised
learning can provide useful cues for how to group examples in representation
space. Examples that cluster tightly in the input space should be mapped to
similar representations. A linear classifier in the new space may achieve better
generalization in many cases ( , ; , ). A
long-standing variant of this approach is the application of principal components
analysis as a pre-processing step before applying a classifier (on the projected
data).

Instead of having separate unsupervised and supervised components in the
model, one can construct models in which a generative model of either P (x) or
P(x,y) shares parameters with a discriminative model of P(y | x). One can
then trade-off the supervised criterion —log P(y | X) with the unsupervised or
generative one (such as —log P(x) or —log P(x,y)). The generative criterion then
expresses a particular form of prior belief about the solution to the supervised
learning problem ( : ), namely that the structure of P(x) is
connected to the structure of P(y | x) in a way that is captured by the shared
parametrization. By controlling how much of the generative criterion is included
in the total criterion, one can find a better trade-off than with a purely generative
or a purely discriminative training criterion (

, 2008).

Y Y

( ) describe a method for learning the kernel
function of a kernel machine used for regression, in which the usage of unlabeled
examples for modeling P(x) improves P(y | x) quite significantly.

See ( ) for more information about semi-supervised learning.

7.7 Multi-Task Learning

Multi-task learning ( : ) is a way to improve generalization by pooling
the examples (which can be seen as soft constraints imposed on the parameters)
arising out of several tasks. In the same way that additional training examples
put more pressure on the parameters of the model towards values that generalize
well, when part of a model is shared across tasks, that part of the model is more
constrained towards good values (assuming the sharing is justified), often yielding
better generalization.
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Fig. 7.2 illustrates a very common form of multi-task learning, in which different
supervised tasks (predicting y(i) given x) share the same input x, as well as some
intermediate-level representation h (shared) capturing a common pool of factors. The
model can generally be divided into two kinds of parts and associated parameters:

1. Task-specific parameters (which only benefit from the examples of their task
to achieve good generalization). These are the upper layers of the neural
network in Fig. 7.2.

2. Generic parameters, shared across all the tasks (which benefit from the
pooled data of all the tasks). These are the lower layers of the neural network

in Fig. 7.2.

O OO,

Figure 7.2: Multi-task learning can be cast in several ways in deep learning frameworks
and this figure illustrates the common situation where the tasks share a common input but
involve different target random variables. The lower layers of a deep network (whether it
is supervised and feedforward or includes a generative component with downward arrows)
can be shared across such tasks, while task-specific parameters (associated respectively
with the weights into and from A" and h(®) can be learned on top of those vielding a
shared representation h®hared) The underlying assumption is that there exists a common
pool of factors that explain the variations in the input x, while each task is associated
with a subset of these factors. In this example, it is additionally assumed that top-level
hidden units h(!) and h(?) are specialized to each task (respectively predicting y(*) and
y ?)) while some intermediate-level representation h(sh2red) is shared across all tasks. In
the unsupervised learning context, it makes sense for some of the top-level factors to be
associated with none of the output tasks (h(3): these are the factors that explain some of
the input variations but are not relevant for predicting y(l) or y(2) .
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Learning curves
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Figure 7.3: Learning curves showing how the negative log-likelihood loss changes over
time (indicated as number of training iterations over the dataset, or epochs). In this
example, we train a maxout network on MNIST. Observe that the training objective
decreases consistently over time, but the validation set average loss eventually begins to
increase again, forming an asymmetric U-shaped curve.

Improved generalization and generalization error bounds ( : ) can be
achieved because of the shared parameters, for which statistical strength can be
greatly improved (in proportion with the increased number of examples for the
shared parameters, compared to the scenario of single-task models). Of course this
will happen only if some assumptions about the statistical relationship between
the different tasks are valid, meaning that there is something shared across some
of the tasks.

From the point of view of deep learning, the underlying prior belief is the
following: among the factors that explain the variations observed in the
data associated with the different tasks, some are shared across two or
more tasks.

7.8 Early Stopping

When training large models with sufficient representational capacity to overfit
the task, we often observe that training error decreases steadily over time, but
validation set error begins to rise again. See Fig. 7.3 for an example of this behavior.
This behavior occurs very reliably.

This means we can obtain a model with better validation set error (and thus,
hopefully better test set error) by returning to the parameter setting at the point
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in time with the lowest validation set error. Instead of running our optimization
algorithm until we reach a (local) minimum of validation error, we run it until the
error on the validation set has not improved for some amount of time. Every time
the error on the validation set improves, we store a copy of the model parameters.
When the training algorithm terminates, we return these parameters, rather than
the latest parameters. This procedure is specified more formally in Algorithm 7.1.

Algorithm 7.1 The early stopping meta-algorithm for determining the best
amount of time to train. This meta-algorithm is a general strategy that works
well with a variety of training algorithms and ways of quantifying error on the
validation set.

Let n be the number of steps between evaluations.

Let p be the “patience,” the number of times to observe worsening validation set

error before giving up.
Let 8, be the initial parameters.
0«0,
1+ 0
70
V4 00
0" — 06
14—
while j < p do
Update 0 by running the training algorithm for n steps.
14 1+n
V' < ValidationSetError(0)
if v < v then
70
0%« 0
¥ 1
v v
else
jJ+1
end if
end while
Best parameters are 8, best number of training steps is

This strategy is known as early stopping. It is probably the most commonly
used form of regularization in deep learning. Its popularity is due both to its
effectiveness and its simplicity.
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One way to think of early stopping is as a very efficient hyperparameter selection
algorithm. In this view, the number of training steps is just another hyperparameter.
We can see in Fig. 7.3 that this hyperparameter has a U-shaped validation set
performance curve. Most hyperparameters that control model capacity have such a
U-shaped validation set performance curve, as illustrated in Fig. 5.3. In the case of
early stopping, we are controlling the effective capacity of the model by determining
how many steps it can take to fit the training set. Most hyperparameters must be
chosen using an expensive guess and check process, where we set a hyperparameter
at the start of training, then run training for several steps to see its effect. The
“training time” hyperparameter is unique in that by definition a single run of
training tries out many values of the hyperparameter. The only significant cost
to choosing this hyperparameter automatically via early stopping is running the
validation set evaluation periodically during training. Ideally, this is done in
parallel to the training process on a separate machine, separate CPU, or separate
GPU from the main training process. If such resources are not available, then the
cost of these periodic evaluations may be reduced by using a validation set that is
small compared to the training set or by evaluating the validation set error less
frequently and obtaining a lower resolution estimate of the optimal training time.

An additional cost to early stopping is the need to maintain a copy of the
best parameters. This cost is generally negligible, because it is acceptable to store
these parameters in a slower and larger form of memory (for example, training in
GPU memory, but storing the optimal parameters in host memory or on a disk
drive). Since the best parameters are written to infrequently and never read during
training, these occasional slow writes have little effect on the total training time.

Early stopping is a very unobtrusive form of regularization, in that it requires
almost no change in the underlying training procedure, the objective function,
or the set of allowable parameter values. This means that it is easy to use early
stopping without damaging the learning dynamics. This is in contrast to weight
decay, where one must be careful not to use too much weight decay and trap the
network in a bad local minimum corresponding to a solution with pathologically
small weights.

Early stopping may be used either alone or in conjunction with other regulariza-
tion strategies. Even when using regularization strategies that modify the objective
function to encourage better generalization, it is rare for the best generalization to
occur at a local minimum of the training objective.

Early stopping requires a validation set, which means some training data is not
fed to the model. To best exploit this extra data, one can perform extra training
after the initial training with early stopping has completed. In the second, extra
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training step, all of the training data is included. There are two basic strategies
one can use for this second training procedure.

One strategy (Algorithm 7.2) is to initialize the model again and retrain on all
of the data. In this second training pass, we train for the same number of steps as
the early stopping procedure determined was optimal in the first pass. There are
some subtleties associated with this procedure. For example, there is not a good
way of knowing whether to retrain for the same number of parameter updates or
the same number of passes through the dataset. On the second round of training,
each pass through the dataset will require more parameter updates because the
training set is bigger.

Algorithm 7.2 A meta-algorithm for using early stopping to determine how long
to train, then retraining on all the data.

Let X (train) and y(train) he the training set.

Split X(train) 544 y(train) into ()((subtra,in)7 X(valid)) and (y(subtrain), y(valid))
respectively.

Run early stopping (Algorithm 7.1) starting from random 6 using X (subtrain)
and y®ubtrain) for training data and X (valid) and ¢ (valid) for validation data. This
returns ¢*, the optimal number of steps.

Set 8 to random values again.
Train on X 8 and y(#") for i* steps.

Another strategy for using all of the data is to keep the parameters obtained
from the first round of training and then continue training but now using all of
the data. At this stage, we now no longer have a guide for when to stop in terms
of a number of steps. Instead, we can monitor the average loss function on the
validation set, and continue training until it falls below the value of the training
set objective at which the early stopping procedure halted. This strategy avoids
the high cost of retraining the model from scratch, but is not as well-behaved. For
example, there is not any guarantee that the objective on the validation set will
ever reach the target value, so this strategy is not even guaranteed to terminate.
This procedure is presented more formally in Algorithm 7.3.

Early stopping is also useful because it reduces the computational cost of the
training procedure. Besides the obvious reduction in cost due to limiting the number
of training iterations, it also has the benefit of providing regularization without
requiring the addition of penalty terms to the cost function or the computation of
the gradients of such additional terms.
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Algorithm 7.3 Meta-algorithm using early stopping to determine at what objec-
tive value we start to overfit, then continue training until that value is reached.

Let X (train) and gy(train) he the training set.
Split X(train) 514 y(train) into ()((subtrabin)7 X(valid)) and (y(s,ubtrain)7 y(valid))
respectively.
Run early stopping (Algorithm 7.1) starting from random 6 using X (subtrain)
and y®ubtrain) for training data and X (valid) and ¢y (valid) for validation data. This
updates 6.
€+ J(O, X(subtrain)7y(subtrain))
while J(8, X (v2lid) ¢ (valid)) > ¢ do

Train on X (train) and ¢(train) for n steps.
end while

How early stopping acts as a regularizer: So far we have stated that early
stopping s a regularization strategy, but we have supported this claim only by
showing learning curves where the validation set error has a U-shaped curve. What
is the actual mechanism by which early stopping regularizes the model?

( ) and ( ) argued that early stopping has the effect of
restricting the optimization procedure to a relatively small volume of parameter
space in the neighborhood of the initial parameter value 8,. More specifically,
imagine taking 7 optimization steps (corresponding to 7 training iterations) and
with learning rate €. We can view the product er as a measure of effective capacity.
Assuming the gradient is bounded, restricting both the number of iterations and
the learning rate limits the volume of parameter space reachable from 8,. In this
sense, et behaves as if it were the reciprocal of the coefficient used for weight decay.

Indeed, we can show how—in the case of a simple linear model with a quadratic
error function and simple gradient descent—early stopping is equivalent to I?
regularization.

In order to compare with classical L? regularization, we examine a simple
setting where the only parameters are linear weights (0 = w). We can model
the cost function J with a quadratic approximation in the neighborhood of the
empirically optimal value of the weights w*:

A 1

J(0) = J(w") + —2('w — w*)TH('w —w"), (7.33)
where H is the Hessian matrix of J with respect to w evaluated at w*. Given the
assumption that w* is a minimum of J(w), we know that H is positive semidefinite.
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w2
~

Figure 7.4: An illustration of the effect of early stopping. (Left) The solid contour
lines indicate the contours of the negative log-likelihood. The dashed line indicates the
trajectory taken by SGD beginning from the origin. Rather than stopping at the point
w* that minimizes the cost, early stopping results in the trajectory stopping at an earlier
point w. (Right) An illustration of the effect of L? regularization for comparison. The
dashed circles indicate the contours of the I? penalty, which causes the minimum of the
total cost to lie nearer the origin than the minimum of the unregularized cost.

Under a local Taylor series approximation, the gradient is given by:
Vwd (w) = H(w — w*). (7.34)
We are going to study the trajectory followed by the parameter vector during

training. For simplicity, let us set the initial parameter vector to the origin,® that
is w(® = 0. Let us suppose that we update the parameters via gradient descent:

w™ =w™ Y — v, J(w™) (7.35)
=w ) —eH@W™ —w*) (7.36)
w'™ —w* = (I — eH)(w™Y —w") (7.37)

Let us now rewrite this expression in the space of the eigenvectors of H , exploiting
the eigendecomposition of H: H = QAQ ', where A is a diagonal matrix and Q
is an orthonormal basis of eigenvectors.

w —w' = (I -eQAQ ") (w™Y — w*) (7.38)

3For neural networks, to obtain symmetry breaking between hidden units, we cannot initialize
all the parameters to 0, as discussed in Sec. 6.2. However, the argument holds for any other
initial value w®.
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Q' (w™ —w*) = (I - eA)QT (w™V — w") (7.39)

Assuming that w(® = 0 and that € is chosen to be small enough to guarantee
|1 —e\i| < 1, the parameter trajectory during training after 7 parameter updates
is as follows:

Q w™ =[I—(I-eA)Q"w*. (7.40)

Now, the expression for Q' w in Eq. 7.13 for L? regularization can be rearranged
as:

Q'w=(A+al)'AQ "w* (7.41)
Q'w=[I—-(A+al)tQ w (7.42)

Comparing Eq. 7.40 and Eq. 7.42, we see that if the hyperparameterse, o, and 7
are chosen such that

(I —€eA)” = (A+al) ta, (7.43)
then L? regularization and early stopping can be seen to be equivalent (at least
under the quadratic approximation of the objective function). Going even further,
by taking logarithms and using the series expansion for log(1+ z), we can conclude
that if all \; are small (that is, e < 1 and \;/a < 1) then

1

N — 7.44

P, (7.41)
1

o~ —. (7.45)
TE

That is, under these assumptions, the number of training iterations 7 plays a role
inversely proportional to the L? regularization parameter, and the inverse of Te
plays the role of the weight decay coefficient.

Parameter values corresponding to directions of significant curvature (of the
objective function) are regularized less than directions of less curvature. Of course,
in the context of early stopping, this really means that parameters that correspond
to directions of significant curvature tend to learn early relative to parameters
corresponding to directions of less curvature.

The derivations in this section have shown that a trajectory of length 7 ends
at a point that corresponds to a minimum of the L?-regularized objective. Early
stopping is of course more than the mere restriction of the trajectory length;
instead, early stopping typically involves monitoring the validation set error in
order to stop the trajectory at a particularly good point in space. Early stopping
therefore has the advantage over weight decay that early stopping automatically
determines the correct amount of regularization while weight decay requires many
training experiments with different values of its hyperparameter.
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7.9 Parameter Tying and Parameter Sharing

Thus far, in this chapter, when we have discussed adding constraints or penalties
to the parameters, we have always done so with respect to a fixed region or point.
For example, L? regularization (or weight decay) penalizes model parameters for
deviating from the fixed value of zero. However, sometimes we may need other
ways to express our prior knowledge about suitable values of the model parameters.
Sometimes we might not know precisely what values the parameters should take
but we know, from knowledge of the domain and model architecture, that there
should be some dependencies between the model parameters.

A common type of dependency that we often want to express is that certain
parameters should be close to one another. Consider the following scenario: we
have two models performing the same classification task (with the same set of
classes) but with somewhat different input distributions. Formally, we have model
A with parameters w(4) and model B with parameters w®). The two models

map the input to two different, but related outputs: 7 = f(w, x) and
7B = g(wB), ).

Let us imagine that the tasks are similar enough (perhaps with similar input
and output distributions) that we believe the model parameters should be close
Z.(A) should be close to wz(.B). We can leverage this information
through regularization. Specifically, we can use a parameter norm penalty of the
form: Q(w@, w®B)) = ||w) — wP)|]3. Here we used an L? penalty, but other

choices are also possible.

to each other: Vi, w

This kind of approach was proposed by ( ), who regularized
the parameters of one model, trained as a classifier in a supervised paradigm, to
be close to the parameters of another model, trained in an unsupervised paradigm
(to capture the distribution of the observed input data). The architectures were
constructed such that many of the parameters in the classifier model could be
paired to corresponding parameters in the unsupervised model.

While a parameter norm penalty is one way to regularize parameters to be
close to one another, the more popular way is to use constraints: to force sets of
parameters to be equal. This method of regularization is often referred to as
parameter sharing, where we interpret the various models or model components as
sharing a unique set of parameters. A significant advantage of parameter sharing
over regularizing the parameters to be close (via a norm penalty) is that only a
subset of the parameters (the unique set) need to be stored in memory. In certain
models—such as the convolutional neural network—this can lead to significant
reduction in the memory footprint of the model.
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Convolutional Neural Networks By far the most popular and extensive use
of parameter sharing occurs in convolutional neural networks (CNNs) applied to
computer vision.

Natural images have many statistical properties that are invariant to translation.
For example, a photo of a cat remains a photo of a cat if it is translated one pixel
to the right. CNNs take this property into account by sharing parameters across
multiple image locations. The same feature (a hidden unit with the same weights)
is computed over different locations in the input. This means that we can find a
cat with the same cat detector whether the cat appears at column ¢ or column
1+ 1 in the image.

Parameter sharing has allowed CNNs to dramatically lower the number of unique
model parameters and to significantly increase network sizes without requiring a
corresponding increase in training data. It remains one of the best examples of
how to effectively incorporate domain knowledge into the network architecture.

CNNs will be discussed in more detail in Chapter 9.

7.10 Sparse Representations

Weight decay acts by placing a penalty directly on the model parameters. Another
strategy is to place a penalty on the activations of the units in a neural network,
encouraging their activations to be sparse. This indirectly imposes a complicated
penalty on the model parameters.

We have already discussed (in Sec. 7.1.2) how L! penalization induces a sparse
parametrization—meaning that many of the parameters become zero (or close to
zero). Representational sparsity, on the other hand, describes a representation
where many of the elements of the representation are zero (or close to zero).
A simplified view of this distinction can be illustrated in the context of linear

regression:

_ - _ - F 2

18 40 0 -2 0 O 3

5) o0 -1 0 3 0 9

15 =105 0 O 0 O

-9 10 0 -1 0 -4 _15 (7.46)
| —3 ] 1 0 0 0 -5 0 | 4
y € R™ A c R xcR”
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[ 14 ] 3 -1 2 -5 4 1] (2)

1 4 2 -3 -1 1 3 5

19 | =1 -1 5 4 2 -3 -2

p 3 1 2 -3 0 -3 _03 (7.47)
| 23 | | 5 4 -2 2 -5 —1| A
y € R™ B € Rmxn h € R"

In the first expression, we have an example of a sparsely parametrized linear
regression model. In the second, we have linear regression with a sparse representa-
tion h of the data @. That is, h is a function of  that, in some sense, represents
the information present in x, but does so with a sparse vector.

Representational regularization is accomplished by the same sorts of mechanisms
that we have used in parameter regularization.

Norm penalty regularization of representations is performed by adding to the
loss function J a norm penalty on the representation. This penalty is denoted
Q(h). As before, we denote the regularized loss function by J:

J(0; X, y) = J(0; X,y) + aQ(h) (7.48)

where a € [0, 0o) weights the relative contribution of the norm penalty term, with
larger values of o corresponding to more regularization.

Just as an L' penalty on the parameters induces parameter sparsity, an L'
penalty on the elements of the representation induces representational sparsity:
Q(h) =||h| = >, |hi|]- Of course, the L! penalty is only one choice of penalty
that can result in a sparse representation. Others include the penalty derived from
a Student+ prior on the representation ( , : , )

and KL divergence penalties ( , ) that are especially
useful for representations with elements constrained to lie on the unit interval.
( ) and ( ) both provide examples of strategies

based on regularizing the average activation across several examples, El > h(), to
be near some target value, such as a vector with .01 for each entry.

Other approaches obtain representational sparsity with a hard constraint on
the activation values. For example, orthogonal matching pursuit ( ,
) encodes an input @ with the representation h that solves the constrained
optimization problem
argmin ||z — WhP, (7.49)
h.|[hllo<k
where ||h||p is the number of non-zero entries of h. This problem can be solved
efficiently when W is constrained to be orthogonal. This method is often called
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OMP-£ with the value of k specified to indicate the number of non-zero features
allowed. ( ) demonstrated that OMP-1 can be a very effective
feature extractor for deep architectures.

Essentially any model that has hidden units can be made sparse. Throughout
this book, we will see many examples of sparsity regularization used in a variety of
contexts.

7.11 Bagging and Other Ensemble Methods

Bagging (short for bootstrap aggregating) is a technique for reducing generalization
error by combining several models ( : ). The idea is to train several
different models separately, then have all of the models vote on the output for test
examples. This is an example of a general strategy in machine learning called model
averaging. Techniques employing this strategy are known as ensemble methods.

The reason that model averaging works is that different models will usually
not make all the same errors on the test set.

Consider for example a set of k regression models. Suppose that each model
makes an error €; on each example, with the errors drawn from a zero-mean
multivariate normal distribution with variances E[e?] = v and covariances Elee ;] =
c. Then the error made by the average prediction of all the ensemble models is
%Eze@ The expected squared error of the ensemble predictor is

2
E (% ;62> = %E ; €& + ; €4€; (7.50)
1 kE—1

TR

c. (7.51)

In the case where the errors are perfectly correlated and ¢ = v, the mean squared
error reduces to v, so the model averaging does not help at all. In the case where
the errors are perfectly uncorrelated and ¢ = 0, the expected squared error of the
ensemble is only %v. This means that the expected squared error of the ensemble
decreases linearly with the ensemble size. In other words, on average, the ensemble
will perform at least as well as any of its members, and if the members make
independent errors, the ensemble will perform significantly better than its members.

Different ensemble methods construct the ensemble of models in different ways.
For example, each member of the ensemble could be formed by training a completely
different kind of model using a different algorithm or objective function. Bagging
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Figure 7.5: A cartoon depiction of how bagging works. Suppose we train an ‘8’ detector
on the dataset depicted above, containing an ‘8’, a ‘6’ and a ‘9’. Suppose we make two
different resampled datasets. The bagging training procedure is to construct each of these
datasets by sampling with replacement. The first dataset omits the ‘9" and repeats the ‘8.
On this dataset, the detector learns that a loop on top of the digit corresponds to an ‘8’.
On the second dataset, we repeat the ‘9’ and omit the ‘6’. In this case, the detector learns
that a loop on the bottom of the digit corresponds to an ‘8’. Each of these individual
classification rules is brittle, but if we average their output then the detector is robust,
achieving maximal confidence only when both loops of the ‘8’ are present.

is a method that allows the same kind of model, training algorithm and objective
function to be reused several times.

Specifically, bagging involves constructing k different datasets. Each dataset
has the same number of examples as the original dataset, but each dataset is
constructed by sampling with replacement from the original dataset. This means
that, with high probability, each dataset is missing some of the examples from the
original dataset and also contains several duplicate examples (on average around
2/3 of the examples from the original dataset are found in the resulting training
set, if it has the same size as the original). Model i is then trained on dataset
1. The differences between which examples are included in each dataset result in
differences between the trained models. See Fig. 7.5 for an example.

Neural networks reach a wide enough variety of solution points that they can
often benefit from model averaging even if all of the models are trained on the same
dataset. Differences in random initialization, random selection of minibatches,
differences in hyperparameters, or different outcomes of non-deterministic imple-
mentations of neural networks are often enough to cause different members of the
ensemble to make partially independent errors.
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Model averaging is an extremely powerful and reliable method for reducing
generalization error. Its use is usually discouraged when benchmarking algorithms
for scientific papers, because any machine learning algorithm can benefit substan-
tially from model averaging at the price of increased computation and memory.
For this reason, benchmark comparisons are usually made using a single model.

Machine learning contests are usually won by methods using model averag-
ing over dozens of models. A recent prominent example is the Netflix Grand
Prize ( : ).

Not all techniques for constructing ensembles are designed to make the ensemble
more regularized than the individual models. For example, a technique called

boosting ( , ,2) constructs an ensemble with higher capacity
than the individual models. Boosting has been applied to build ensembles of neural
networks ( : ) by incrementally adding neural networks to

the ensemble. Boosting has also been applied interpreting an individual neural
network as an ensemble ( , ), incrementally adding hidden units
to the neural network.

7.12 Dropout

Dropout ( , ) provides a computationally inexpensive but
powerful method of regularizing a broad family of models. To a first approximation,
dropout can be thought of as a method of making bagging practical for ensembles
of very many large neural networks. Bagging involves training multiple models,
and evaluating multiple models on each test example. This seems impractical
when each model is a large neural network, since training and evaluating such
networks is costly in terms of runtime and memory. It is common to use ensembles
of five to ten neural networks— ( ) used six to win the ILSVRC—
but more than this rapidly becomes unwieldy. Dropout provides an inexpensive
approximation to training and evaluating a bagged ensemble of exponentially many
neural networks.

Specifically, dropout trains the ensemble consisting of all sub-networks that
can be formed by removing non-output units from an underlying base network,
as illustrated in Fig. 7.6. In most modern neural networks, based on a series of
affine transformations and nonlinearities, we can effectively remove a unit from a
network by multiplying its output value by zero. This procedure requires some
slight modification for models such as radial basis function networks, which take
the difference between the unit’s state and some reference value. Here, we present
the dropout algorithm in terms of multiplication by zero for simplicity, but it can
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be trivially modified to work with other operations that remove a unit from the
network.

Recall that to learn with bagging, we define k different models, construct k
different datasets by sampling from the training set with replacement, and then
train model 7 on dataset 7. Dropout aims to approximate this process, but with an
exponentially large number of neural networks. Specifically, to train with dropout,
we use a minibatch-based learning algorithm that makes small steps, such as
stochastic gradient descent. Each time we load an example into a minibatch, we
randomly sample a different binary mask to apply to all of the input and hidden
units in the network. The mask for each unit is sampled independently from all of
the others. The probability of sampling a mask value of one (causing a unit to be
included) is a hyperparameter fixed before training begins. It is not a function
of the current value of the model parameters or the input example. Typically,
an input unit is included with probability 0.8 and a hidden unit is included with
probability 0.5. We then run forward propagation, back-propagation, and the
learning update as usual. Fig. 7.7 illustrates how to run forward propagation with
dropout.

More formally, suppose that a mask vector p specifies which units to include,
and J(0, pu) defines the cost of the model defined by parameters 8 and mask p.
Then dropout training consists in minimizing K, J(@, u). The expectation contains
exponentially many terms but we can obtain an unbiased estimate of its gradient
by sampling values of pu.

Dropout training is not quite the same as bagging training. In the case of
bagging, the models are all independent. In the case of dropout, the models share
parameters, with each model inheriting a different subset of parameters from the
parent neural network. This parameter sharing makes it possible to represent an
exponential number of models with a tractable amount of memory. In the case of
bagging, each model is trained to convergence on its respective training set. In the
case of dropout, typically most models are not explicitly trained at all—usually,
the model is large enough that it would be infeasible to sample all possible sub-
networks within the lifetime of the universe. Instead, a tiny fraction of the possible
sub-networks are each trained for a single step, and the parameter sharing causes
the remaining sub-networks to arrive at good settings of the parameters. These
are the only differences. Beyond these, dropout follows the bagging algorithm. For
example, the training set encountered by each sub-network is indeed a subset of
the original training set sampled with replacement.

To make a prediction, a bagged ensemble must accumulate votes from all of
its members. We refer to this process as inference in this context. So far, our
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Figure 7.6: Dropout trains an ensemble consisting of all sub-networks that can be
constructed by removing non-output units from an underlying base network. Here, we
begin with a base network with two visible units and two hidden units. There are sixteen
possible subsets of these four units. We show all sixteen subnetworks that may be formed
by dropping out different subsets of units from the original network. In this small example,
a large proportion of the resulting networks have no input units or no path connecting
the input to the output. This problem becomes insignificant for networks with wider
layers, where the probability of dropping all possible paths from inputs to outputs becomes
smaller.
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Figure 7.7: An example of forward propagation through a feedforward network using
dropout. (Top) In this example, we use a feedforward network with two input units, one
hidden layer with two hidden units, and one output unit. (Bottom) To perform forward
propagation with dropout, we randomly sample a vector p with one entry for each input
or hidden unit in the network. The entries of 4 are binary and are sampled independently
from each other. The probability of each entry being 1 is a hyperparameter, usually 05

for the hidden layers and 08 for the input. Each unit in the network is multiplied by
the corresponding mask, and then forward propagation continues through the rest of the
network as usual. This is equivalent to randomly selecting one of the sub-networks from
Fig. 7.6 and running forward propagation through it.
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description of bagging and dropout has not required that the model be explicitly
probabilistic. Now, we assume that the model’s role is to output a probability
distribution. In the case of bagging, each model i produces a probability distribution
p(i) (y | ©. The prediction of the ensemble is given by the arithmetic mean of all
of these distributions,

k
Z (y | ) (7.52)

In the case of dropout, each sub-model defined by mask vector p defines a prob-
ability distribution p(y | @, ). The arithmetic mean over all masks is given

by

Er?‘l»—\

Zp (v @) (7.53)

where p(p) is the probability distribution that was used to sample p at training
time.

Because this sum includes an exponential number of terms, it is intractable
to evaluate except in cases where the structure of the model permits some form
of simplification. So far, deep neural nets are not known to permit any tractable
simplification. Instead, we can approximate the inference with sampling, by
averaging together the output from many masks. Even 10-20 masks are often
sufficient to obtain good performance.

However, there is an even better approach, that allows us to obtain a good
approximation to the predictions of the entire ensemble, at the cost of only one
forward propagation. To do so, we change to using the geometric mean rather than
the arithmetic mean of the ensemble members’ predicted distributions.

( ) present arguments and empirical evidence that the geometric
mean performs comparably to the arithmetic mean in this context.

The geometric mean of multiple probability distributions is not guaranteed to be
a probability distribution. To guarantee that the result is a probability distribution,
we impose the requirement that none of the sub-models assigns probability 0 to any
event, and we renormalize the resulting distribution. The unnormalized probability
distribution defined directly by the geometric mean is given by

pensemble y | 213 = 2d Hp Yy | € I’l’ (754)

where d is the number of units that may be dropped. Here we use a uniform
distribution over p to simplify the presentation, but non-uniform distributions are
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also possible. To make predictions we must re-normalize the ensemble:

f%n mbl (y | QJ)
Pensemble (y | x) - Zy/ ﬁseilser:ble(y/ | iB) (755)

A key insight ( , ) involved in dropout is that we can approxi-
mate Pensemble Dy evaluating p(y | ) in one model: the model with all units, but
with the weights going out of unit ¢ multiplied by the probability of including unit
1. The motivation for this modification is to capture the right expected value of
the output from that unit. We call this approach the weight scaling inference rule.
There is not yet any theoretical argument for the accuracy of this approximate
inference rule in deep nonlinear networks, but empirically it performs very well.

Because we usually use an inclusion probability of %, the weight scaling rule
usually amounts to dividing the weights by 2 at the end of training, and then using
the model as usual. Another way to achieve the same result is to multiply the
states of the units by 2 during training. Either way, the goal is to make sure that
the expected total input to a unit at test time is roughly the same as the expected
total input to that unit at train time, even though half the units at train time are
missing on average.

For many classes of models that do not have nonlinear hidden units, the weight
scaling inference rule is exact. For a simple example, consider a softmax regression
classifier with n input variables represented by the vector v:

P(y =y | v) = softmax <WTV + b) : (7.56)
y
We can index into the family of sub-models by element-wise multiplication of the
input with a binary vector d:

P(y =y | v;d) = softmax (WT(dG) v)+ b) . (7.57)
y
The ensemble predictor is defined by re-normalizing the geometric mean over all
ensemble members’ predictions:

ﬁensemble(y =Y | V)
Pensembl (Y =Y ‘ V) = ~ (7-58)
e © Zy Pensemble(y - y/ ‘ V)

where

Pensemble(y =Yy | V) = 2n H P(y =Y | v d) (759)
de{0,1}~
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To see that the weight scaling rule is exact, we can simplify Pensemble:

]Bensemble(y =y|v)=m H Ply=vy|v;d) (7.60)
de{0,1}n
= H softmax (W' (d® v) +b), (7.61)
de{0,1}n

exp (W,/.(d©v)+b)

= 2" H (7.62)
de{0,1}™ Zy/ exp <Wy—/|—’(d © V) + b)
27{/1—[(16{0,1}“ exp (W, (dov)+b)
(7.63)

27</Hde{0,1}” >, €Xp (VVyT’:(d OV)+ b)

Because P will be normalized, we can safely ignore multiplication by factors that
are constant with respect to y:

Pensemble(y =Y | V) X gn H exp (WQJT (d ©O) V) + b) (764)
de{0,1}»

— exp (% Y widov)+ b) (7.65)
de{0,1}n

1
— exp (—QW;—:V - b) (7.66)

Substituting this back into Eq. 7.58 we obtain a softmax classifier with weights
sW.

The weight scaling rule is also exact in other settings, including regression
networks with conditionally normal outputs, and deep networks that have hidden
layers without nonlinearities. However, the weight scaling rule is only an approxi-
mation for deep models that have nonlinearities. Though the approximation has
not been theoretically characterized, it often works well, empirically.

( ) found experimentally that the weight scaling approximation can work
better (in terms of classification accuracy) than Monte Carlo approximations to the
ensemble predictor. This held true even when the Monte Carlo approximation was
allowed to sample up to 1,000 sub-networks. ( ) found
that some models obtain better classification accuracy using twenty samples and
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the Monte Carlo approximation. It appears that the optimal choice of inference
approximation is problem-dependent.

( ) showed that dropout is more effective than other
standard computationally inexpensive regularizers, such as weight decay, filter
norm constraints and sparse activity regularization. Dropout may also be combined
with other forms of regularization to yield a further improvement.

One advantage of dropout is that it is very computationally cheap. Using
dropout during training requires only O(n) computation per example per update,
to generate n random binary numbers and multiply them by the state. Depending
on the implementation, it may also require O (n) memory to store these binary
numbers until the back-propagation stage. Running inference in the trained model
has the same cost per-example as if dropout were not used, though we must pay
the cost of dividing the weights by 2 once before beginning to run inference on
examples.

Another significant advantage of dropout is that it does not significantly limit
the type of model or training procedure that can be used. It works well with nearly
any model that uses a distributed representation and can be trained with stochastic
gradient descent. This includes feedforward neural networks, probabilistic models
such as restricted Boltzmann machines ( : ), and recurrent
neural networks ( , : , ). Many other
regularization strategies of comparable power impose more severe restrictions on
the architecture of the model.

Though the cost per-step of applying dropout to a specific model is negligible,
the cost of using dropout in a complete system can be significant. Because dropout
is a regularization technique, it reduces the effective capacity of a model. To offset
this effect, we must increase the size of the model. Typically the optimal validation
set error is much lower when using dropout, but this comes at the cost of a much
larger model and many more iterations of the training algorithm. For very large
datasets, regularization confers little reduction in generalization error. In these
cases, the computational cost of using dropout and larger models may outweigh
the benefit of regularization.

When extremely few labeled training examples are available, dropout is less

effective. Bayesian neural networks ( : ) outperform dropout on the
Alternative Splicing Dataset ( , ) where fewer than 5,000 examples
are available ( : ). When additional unlabeled data is available,

unsupervised feature learning can gain an advantage over dropout.

( ) showed that, when applied to linear regression, dropout
is equivalent to L? weight decay, with a different weight decay coefficient for
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each input feature. The magnitude of each feature’s weight decay coefficient is
determined by its variance. Similar results hold for other linear models. For deep
models, dropout is not equivalent to weight decay.

The stochasticity used while training with dropout is not necessary for the
approach’s success. It is just a means of approximating the sum over all sub-
models. ( ) derived analytical approximations to this
marginalization. Their approximation, known as fast dropout resulted in faster
convergence time due to the reduced stochasticity in the computation of the
gradient. This method can also be applied at test time, as a more principled
(but also more computationally expensive) approximation to the average over all
sub-networks than the weight scaling approximation. Fast dropout has been used
to nearly match the performance of standard dropout on small neural network
problems, but has not yet yielded a significant improvement or been applied to a
large problem.

Just as stochasticity is not necessary to achieve the regularizing effect of
dropout, it is also not sufficient. To demonstrate this, ( )
designed control experiments using a method called dropout boosting that they
designed to use exactly the same mask noise as traditional dropout but lack
its regularizing effect. Dropout boosting trains the entire ensemble to jointly
maximize the log-likelihood on the training set. In the same sense that traditional
dropout is analogous to bagging, this approach is analogous to boosting. As
intended, experiments with dropout boosting show almost no regularization effect
compared to training the entire network as a single model. This demonstrates that
the interpretation of dropout as bagging has value beyond the interpretation of
dropout as robustness to noise. The regularization effect of the bagged ensemble is
only achieved when the stochastically sampled ensemble members are trained to
perform well independently of each other.

Dropout has inspired other stochastic approaches to training exponentially
large ensembles of models that share weights. DropConnect is a special case of
dropout where each product between a single scalar weight and a single hidden
unit state is considered a unit that can be dropped ( , ). Stochastic
pooling is a form of randomized pooling (see Sec. 9.3) for building ensembles
of convolutional networks with each convolutional network attending to different
spatial locations of each feature map. So far, dropout remains the most widely
used implicit ensemble method.

One of the key insights of dropout is that training a network with stochastic
behavior and making predictions by averaging over multiple stochastic decisions
implements a form of bagging with parameter sharing. Earlier, we described
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dropout as bagging an ensemble of models formed by including or excluding
units. However, there is no need for this model averaging strategy to be based on
inclusion and exclusion. In principle, any kind of random modification is admissible.
In practice, we must choose modification families that neural networks are able
to learn to resist. Ideally, we should also use model families that allow a fast
approximate inference rule. We can think of any form of modification parametrized
by a vector p as training an ensemble consisting of p(y | @, u) for all possible
values of p. There is no requirement that g have a finite number of values. For
example, p can be real-valued. ( ) showed that multiplying the
weights by p ~ N (1, 1) can outperform dropout based on binary masks. Because
E[x] = 1 the standard network automatically implements approximate inference
in the ensemble, without needing any weight scaling.

So far we have described dropout purely as a means of performing efficient,
approximate bagging. However, there is another view of dropout that goes further
than this. Dropout trains not just a bagged ensemble of models, but an ensemble
of models that share hidden units. This means each hidden unit must be able to
perform well regardless of which other hidden units are in the model. Hidden units
must be prepared to be swapped and interchanged between models.

( ) were inspired by an idea from biology: sexual reproduction, which involves
swapping genes between two different organisms, creates evolutionary pressure for
genes to become not just good, but to become readily swapped between different
organisms. Such genes and such features are very robust to changes in their
environment because they are not able to incorrectly adapt to unusual features
of any one organism or model. Dropout thus regularizes each hidden unit to be
not merely a good feature but a feature that is good in many contexts.

( ) compared dropout training to training of large ensembles and
concluded that dropout offers additional improvements to generalization error
beyond those obtained by ensembles of independent models.

It is important to understand that a large portion of the power of dropout
arises from the fact that the masking noise is applied to the hidden units. This
can be seen as a form of highly intelligent, adaptive destruction of the information
content of the input rather than destruction of the raw values of the input. For
example, if the model learns a hidden unit h; that detects a face by finding the nose,
then dropping h; corresponds to erasing the information that there is a nose in
the image. The model must learn another h;, either that redundantly encodes the
presence of a nose, or that detects the face by another feature, such as the mouth.
Traditional noise injection techniques that add unstructured noise at the input are
not able to randomly erase the information about a nose from an image of a face
unless the magnitude of the noise is so great that nearly all of the information in
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the image is removed. Destroying extracted features rather than original values
allows the destruction process to make use of all of the knowledge about the input
distribution that the model has acquired so far.

Another important aspect of dropout is that the noise is multiplicative. If the
noise were additive with fixed scale, then a rectified linear hidden unit h; with
added noise € could simply learn to have h; become very large in order to make
the added noise € insignificant by comparison. Multiplicative noise does not allow
such a pathological solution to the noise robustness problem.

Another deep learning algorithm, batch normalization, reparametrizes the
model in a way that introduces both additive and multiplicative noise on the
hidden units at training time. The primary purpose of batch normalization is to
improve optimization, but the noise can have a regularizing effect, and sometimes
makes dropout unnecessary. Batch normalization is described further in Sec. 8.7.1.

7.13 Adversarial Training

In many cases, neural networks have begun to reach human performance when
evaluated on an i.i.d. test set. It is natural therefore to wonder whether these
models have obtained a true human-level understanding of these tasks. In order
to probe the level of understanding a network has of the underlying task, we can
search for examples that the model misclassifies. ( ) found that
even neural networks that perform at human level accuracy have a nearly 100%
error rate on examples that are intentionally constructed by using an optimization
procedure to search for an input ' near a data point x such that the model output
is very different at «’. In many cases, ' can be so similar to x that a human
observer cannot tell the difference between the original example and the adversarial
example, but the network can make highly different predictions. See Fig. 7.8 for an
example.

Adversarial examples have many implications, for example, in computer security,
that are beyond the scope of this chapter. However, they are interesting in the
context of regularization because one can reduce the error rate on the original i.i.d.
test set via adversarial training—training on adversarially perturbed examples
from the training set ( , ; , ).

( ) showed that one of the primary causes of these
adversarial examples is excessive linearity. Neural networks are built out of
primarily linear building blocks. In some experiments the overall function they
implement proves to be highly linear as a result. These linear functions are easy
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Figure 7.8: A demonstration of adversarial example generation applied to GoogleNet
(Szegedy et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose
elements are equal to the sign of the elements of the gradient of the cost function with
respect to the input, we can change Googl.eNet’s classification of the image. Reproduced
with permission from Goodfellow et al. (2014D).

to optimize. Unfortunately, the value of a linear function can change very rapidly
if it has numerous inputs. If we change each input by €, then a linear function
with weights w can change by as much as €||w||;, which can be a very large
amount if w is high-dimensional. Adversarial training discourages this highly
sensitive locally linear behavior by encouraging the network to be locally constant
in the neighborhood of the training data. This can be seen as a way of explicitly
introducing a local constancy prior into supervised neural nets.

Adversarial training helps to illustrate the power of using a large function
family in combination with aggressive regularization. Purely linear models, like
logistic regression, are not able to resist adversarial examples because they are
forced to be linear. Neural networks are able to represent functions that can range
from nearly linear to nearly locally constant and thus have the flexibility to capture
linear trends in the training data while still learning to resist local perturbation.

Adversarial examples also provide a means of accomplishing semi-supervised
learning. At a point & that is not associated with a label in the dataset, the
model itself assigns some label . The model’s label § may not be the true label,
but if the model is high quality, then ¢ has a high probability of providing the
true label. We can seek an adversarial example &’ that causes the classifier to
output a label 3/ with ¢/ # . Adversarial examples generated using not the
true label but a label provided by a trained model are called virtual adversarial
examples (Mivato et al., 2015). The classifier may then be trained to assign the
same label to  and «/. This encourages the classifier to learn a function that is
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robust to small changes anywhere along the manifold where the unlabeled data
lies. The assumption motivating this approach is that different classes usually lie
on disconnected manifolds, and a small perturbation should not be able to jump
from one class manifold to another class manifold.

7.14 Tangent Distance, Tangent Prop, and Manifold
Tangent Classifier

Many machine learning algorithms aim to overcome the curse of dimensionality
by assuming that the data lies near a low-dimensional manifold, as described in
Sec. 5.11.3.

One of the early attempts to take advantage of the manifold hypothesis is the
tangent distance algorithm ( : , ). It is a non-parametric
nearest-neighbor algorithm in which the metric used is not the generic Euclidean
distance but one that is derived from knowledge of the manifolds near which
probability concentrates. It is assumed that we are trying to classify examples and
that examples on the same manifold share the same category. Since the classifier
should be invariant to the local factors of variation that correspond to movement
on the manifold, it would make sense to use as nearest-neighbor distance between
points 1 and x2 the distance between the manifolds M; and Ms to which they
respectively belong. Although that may be computationally difficult (it would
require solving an optimization problem, to find the nearest pair of points on M
and M5), a cheap alternative that makes sense locally is to approximate M; by its
tangent plane at ; and measure the distance between the two tangents, or between
a tangent plane and a point. That can be achieved by solving a low-dimensional
linear system (in the dimension of the manifolds). Of course, this algorithm requires
one to specify the tangent vectors.

In a related spirit, the tangent prop algorithm ( , ) (Fig. 7.9)
trains a neural net classifier with an extra penalty to make each output f(x) of
the neural net locally invariant to known factors of variation. These factors of
variation correspond to movement along the manifold near which examples of the
same class concentrate. Local invariance is achieved by requiring Vg f (x) to be
orthogonal to the known manifold tangent vectors v at x, or equivalently that
the directional derivative of f at & in the directions v® be small by adding a
regularization penalty €Q:

() = 3 ((Vaf(@) 00" (767)

1
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This regularizer can of course by scaled by an appropriate hyperparameter, and, for
most neural networks, we would need to sum over many outputs rather than the lone
output f(x) described here for simplicity. As with the tangent distance algorithm,
the tangent vectors are derived a priori, usually from the formal knowledge of
the effect of transformations such as translation, rotation, and scaling in images.
Tangent prop has been used not just for supervised learning ( , )
but also in the context of reinforcement learning ( : ).

Tangent propagation is closely related to dataset augmentation. In both
cases, the user of the algorithm encodes his or her prior knowledge of the task
by specifying a set of transformations that should not alter the output of the
network. The difference is that in the case of dataset augmentation, the network is
explicitly trained to correctly classify distinct inputs that were created by applying
more than an infinitesimal amount of these transformations. Tangent propagation
does not require explicitly visiting a new input point. Instead, it analytically
regularizes the model to resist perturbation in the directions corresponding to
the specified transformation. While this analytical approach is intellectually
elegant, it has two major drawbacks. First, it only regularizes the model to resist
infinitesimal perturbation. Explicit dataset augmentation confers resistance to
larger perturbations. Second, the infinitesimal approach poses difficulties for models
based on rectified linear units. These models can only shrink their derivatives
by turning units off or shrinking their weights. They are not able to shrink their
derivatives by saturating at a high value with large weights, as sigmoid or tanh
units can. Dataset augmentation works well with rectified linear units because
different subsets of rectified units can activate for different transformed versions of
each original input.

Tangent propagation is also related to double backprop ( ,

) and adversarial training ( : ; : ).
Double backprop regularizes the Jacobian to be small, while adversarial training
finds inputs near the original inputs and trains the model to produce the same
output on these as on the original inputs. Tangent propagation and dataset
augmentation using manually specified transformations both require that the
model should be invariant to certain specified directions of change in the input.
Double backprop and adversarial training both require that the model should be
invariant to all directions of change in the input so long as the change is small. Just
as dataset augmentation is the non-infinitesimal version of tangent propagation,
adversarial training is the non-infinitesimal version of double backprop.

The manifold tangent classifier ( : ), eliminates the need to
know the tangent vectors a priori. As we will see in Chapter 14, autoencoders can
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Figure 7.9: Illustration of the main idea of the tangent prop algorithm ( ,

) and manifold tangent classifier ( ) ), which both regularize the
classifier output function f(x). Each curve represents the manifold for a different class,
illustrated here as a one-dimensional manifold embedded in a two-dimensional space.
On one curve, we have chosen a single point and drawn a vector that is tangent to the
class manifold (parallel to and touching the manifold) and a vector that is normal to the
class manifold (orthogonal to the manifold). In multiple dimensions there may be many
tangent directions and many normal directions. We expect the classification function to
change rapidly as it moves in the direction normal to the manifold, and not to change as
it moves along the class manifold. Both tangent propagation and the manifold tangent
classifier regularize f(x) to not change very much asx moves along the manifold. Tangent
propagation requires the user to manually specify functions that compute the tangent
directions (such as specifying that small translations of images remain in the same class
manifold) while the manifold tangent classifier estimates the manifold tangent directions
by training an autoencoder to fit the training data. The use of autoencoders to estimate
manifolds will be described in Chapter 14.

estimate the manifold tangent vectors. The manifold tangent classifier makes use
of this technique to avoid needing user-specified tangent vectors. As illustrated
in Fig. 14.10, these estimated tangent vectors go beyond the classical invariants
that arise out of the geometry of images (such as translation, rotation and scaling)
and include factors that must be learned because they are object-specific (such as
moving body parts). The algorithm proposed with the manifold tangent classifier
is therefore simple: (1) use an autoencoder to learn the manifold structure by
unsupervised learning, and (2) use these tangents to regularize a neural net classifier
as in tangent prop (Eq. 7.67).

This chapter has described most of the general strategies used to regularize
neural networks. Regularization is a central theme of machine learning and as such
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will be revisited periodically by most of the remaining chapters. Another central
theme of machine learning is optimization, described next.
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Chapter 8

Optimization for Training Deep
Models

Deep learning algorithms involve optimization in many contexts. For example,
performing inference in models such as PCA involves solving an optimization
problem. We often use analytical optimization to write proofs or design algorithms.
Of all of the many optimization problems involved in deep learning, the most
difficult is neural network training. It is quite common to invest days to months of
time on hundreds of machines in order to solve even a single instance of the neural
network training problem. Because this problem is so important and so expensive,
a specialized set of optimization techniques have been developed for solving it.
This chapter presents these optimization techniques for neural network training.

If you are unfamiliar with the basic principles of gradient-based optimization,
we suggest reviewing Chapter 4. That chapter includes a brief overview of numerical
optimization in general.

This chapter focuses on one particular case of optimization: finding the param-
eters 0 of a neural network that significantly reduce a cost function J(8), which
typically includes a performance measure evaluated on the entire training set as
well as additional regularization terms.

We begin with a description of how optimization used as a training algorithm
for a machine learning task differs from pure optimization. Next, we present several
of the concrete challenges that make optimization of neural networks difficult. We
then define several practical algorithms, including both optimization algorithms
themselves and strategies for initializing the parameters. More advanced algorithms
adapt their learning rates during training or leverage information contained in
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the second derivatives of the cost function. Finally, we conclude with a review of
several optimization strategies that are formed by combining simple optimization
algorithms into higher-level procedures.

8.1 How Learning Differs from Pure Optimization

Optimization algorithms used for training of deep models differ from traditional
optimization algorithms in several ways. Machine learning usually acts indirectly.
In most machine learning scenarios, we care about some performance measure
P, that is defined with respect to the test set and may also be intractable. We
therefore optimize P only indirectly. We reduce a different cost function J(8) in
the hope that doing so will improve P. This is in contrast to pure optimization,
where minimizing J is a goal in and of itself. Optimization algorithms for training
deep models also typically include some specialization on the specific structure of
machine learning objective functions.

Typically, the cost function can be written as an average over the training set,
such as

J(0) = E(ay)~paaa L(f (5 0), 9), (8.1)

where L is the per-example loss function, f(x; @) is the predicted output when
the input is @, Pgata is the empirical distribution. In the supervised learning case,
y is the target output. Throughout this chapter, we develop the unregularized
supervised case, where the arguments to L are f(a; @) and y. However, it is trivial
to extend this development, for example, to include @ or x as arguments, or to
exclude y as arguments, in order to develop various forms of regularization or
unsupervised learning.

Eq. 8.1 defines an objective function with respect to the training set. We
would usually prefer to minimize the corresponding objective function where the
expectation is taken across the data generating distribution pq,¢, rather than
just over the finite training set:

‘]*(9) = E(m,y)wpdataL(f(w§ 0)7 y) (82)

8.1.1 Empirical Risk Minimization

The goal of a machine learning algorithm is to reduce the expected generalization
error given by Eq. 8.2. This quantity is known as the risk. We emphasize here that
the expectation is taken over the true underlying distribution pgata. If we knew
the true distribution pgata(, y), risk minimization would be an optimization task
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solvable by an optimization algorithm. However, when we do not know pgata(, y)
but only have a training set of samples, we have a machine learning problem.

The simplest way to convert a machine learning problem back into an op-
timization problem is to minimize the expected loss on the training set. This
means replacing the true distribution p(x, y) with the empirical distribution p(x, y)
defined by the training set. We now minimize the empirical risk

1 - 7 7
vayNﬁdata(wzy)[L(f(x 0), - i Z z®; ;6), ( )) (8.3)

where m is the number of training examples.

The training process based on minimizing this average training error is known
as empirical risk minimization. In this setting, machine learning is still very similar
to straightforward optimization. Rather than optimizing the risk directly, we
optimize the empirical risk, and hope that the risk decreases significantly as well.
A variety of theoretical results establish conditions under which the true risk can
be expected to decrease by various amounts.

However, empirical risk minimization is prone to overfitting. Models with
high capacity can simply memorize the training set. In many cases, empirical
risk minimization is not really feasible. The most effective modern optimization
algorithms are based on gradient descent, but many useful loss functions, such
as 0-1 loss, have no useful derivatives (the derivative is either zero or undefined
everywhere). These two problems mean that, in the context of deep learning, we
rarely use empirical risk minimization. Instead, we must use a slightly different
approach, in which the quantity that we actually optimize is even more different
from the quantity that we truly want to optimize.

8.1.2 Surrogate Loss Functions and Early Stopping

Sometimes, the loss function we actually care about (say classification error) is not
one that can be optimized efficiently. For example, exactly minimizing expected 0-1
loss is typically intractable (exponential in the input dimension), even for a linear
classifier ( , ). In such situations, one typically optimizes
a surrogate loss function instead, which acts as a proxy but has advantages. For
example, the negative log-likelihood of the correct class is typically used as a
surrogate for the 0-1 loss. The negative log-likelihood allows the model to estimate
the conditional probability of the classes, given the input, and if the model can
do that well, then it can pick the classes that yield the least classification error in
expectation.
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In some cases, a surrogate loss function actually results in being able to learn
more. For example, the test set 0-1 loss often continues to decrease for a long
time after the training set 0-1 loss has reached zero, when training using the
log-likelihood surrogate. This is because even when the expected 0-1 loss is zero,
one can improve the robustness of the classifier by further pushing the classes apart
from each other, obtaining a more confident and reliable classifier, thus extracting
more information from the training data than would have been possible by simply
minimizing the average 0-1 loss on the training set.

A very important difference between optimization in general and optimization
as we use it for training algorithms is that training algorithms do not usually halt
at a local minimum. Instead, a machine learning algorithm usually minimizes
a surrogate loss function but halts when a convergence criterion based on early
stopping (Sec. 7.8) is satisfied. Typically the early stopping criterion is based on
the true underlying loss function, such as 0-1 loss measured on a validation set,
and is designed to cause the algorithm to halt whenever overfitting begins to occur.
Training often halts while the surrogate loss function still has large derivatives,
which is very different from the pure optimization setting, where an optimization
algorithm is considered to have converged when the gradient becomes very small.

8.1.3 Batch and Minibatch Algorithms

One aspect of machine learning algorithms that separates them from general
optimization algorithms is that the objective function usually decomposes as a sum
over the training examples. Optimization algorithms for machine learning typically
compute each update to the parameters based on an expected value of the cost
function estimated using only a subset of the terms of the full cost function.

For example, maximum likelihood estimation problems, when viewed in log
space, decompose into a sum over each example:

6 = argmax ) _ log puodei(z'”, y"; 6). (8.4)
6 =

Maximizing this sum is equivalent to maximizing the expectation over the
empirical distribution defined by the training set:

J(G) = Ex,ywﬁdata IOg pmodel(ma Y 0) (85)

Most of the properties of the objective function J used by most of our opti-
mization algorithms are also expectations over the training set. For example, the
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most commonly used property is the gradient:
VoJ(0) = Ex ypy... Vo 10g Pmodel (T, ¥; 0). (8.6)

Computing this expectation exactly is very expensive because it requires
evaluating the model on every example in the entire dataset. In practice, we can
compute these expectations by randomly sampling a small number of examples
from the dataset, then taking the average over only those examples.

Recall that the standard error of the mean (Eq. 5.46) estimated from n samples
is given by o/ \/n, whereo is the true standard deviation of the value of the samples.
The denominator of \/n shows that there are less than linear returns to using
more examples to estimate the gradient. Compare two hypothetical estimates of
the gradient, one based on 100 examples and another based on 10,000 examples.
The latter requires 100 times more computation than the former, but reduces the
standard error of the mean only by a factor of 10. Most optimization algorithms
converge much faster (in terms of total computation, not in terms of number of
updates) if they are allowed to rapidly compute approximate estimates of the
gradient rather than slowly computing the exact gradient.

Another consideration motivating statistical estimation of the gradient from a
small number of samples is redundancy in the training set. In the worst case, all
m samples in the training set could be identical copies of each other. A sampling-
based estimate of the gradient could compute the correct gradient with a single
sample, using m times less computation than the naive approach. In practice, we
are unlikely to truly encounter this worst-case situation, but we may find large
numbers of examples that all make very similar contributions to the gradient.

Optimization algorithms that use the entire training set are called batch or
deterministic gradient methods, because they process all of the training examples
simultaneously in a large batch. This terminology can be somewhat confusing
because the word “batch” is also often used to describe the minibatch used by
minibatch stochastic gradient descent. Typically the term “batch gradient descent”
implies the use of the full training set, while the use of the term “batch” to describe
a group of examples does not. For example, it is very common to use the term
“batch size” to describe the size of a minibatch.

Optimization algorithms that use only a single example at a time are sometimes
called stochastic or sometimes online methods. The term online is usually reserved
for the case where the examples are drawn from a stream of continually created
examples rather than from a fixed-size training set over which several passes are
made.

Most algorithms used for deep learning fall somewhere in between, using more
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than one but less than all of the training examples. These were traditionally called
minibatch or minibatch stochastic methods and it is now common to simply call
them stochastic methods.

The canonical example of a stochastic method is stochastic gradient descent,
presented in detail in Sec. 8.3.1.

Minibatch sizes are generally driven by the following factors:

e Larger batches provide a more accurate estimate of the gradient, but with
less than linear returns.

e Multicore architectures are usually underutilized by extremely small batches.
This motivates using some absolute minimum batch size, below which there
is no reduction in the time to process a minibatch.

e If all examples in the batch are to be processed in parallel (as is typically
the case), then the amount of memory scales with the batch size. For many
hardware setups this is the limiting factor in batch size.

e Some kinds of hardware achieve better runtime with specific sizes of arrays.
Especially when using GPUs, it is common for power of 2 batch sizes to offer
better runtime. Typical power of 2 batch sizes range from 32 to 256, with 16
sometimes being attempted for large models.

e Small batches can offer a regularizing effect ( , ),
perhaps due to the noise they add to the learning process. Generalization
error is often best for a batch size of 1. Training with such a small batch
size might require a small learning rate to maintain stability due to the high
variance in the estimate of the gradient. The total runtime can be very high
due to the need to make more steps, both because of the reduced learning
rate and because it takes more steps to observe the entire training set.

Different kinds of algorithms use different kinds of information from the mini-
batch in different ways. Some algorithms are more sensitive to sampling error than
others, either because they use information that is difficult to estimate accurately
with few samples, or because they use information in ways that amplify sampling
errors more. Methods that compute updates based only on the gradient g are
usually relatively robust and can handle smaller batch sizes like 100. Second-order
methods, which use also the Hessian matrix H and compute updates such as
H- g, typically require much larger batch sizes like 10,000. These large batch
sizes are required to minimize fluctuations in the estimates of H 1g. Suppose
that H is estimated perfectly but has a poor condition number. Multiplication by
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H or its inverse amplifies pre-existing errors, in this case, estimation errors in g.
Very small changes in the estimate of g can thus cause large changes in the update
H™ g, even if H were estimated perfectly. Of course, H will be estimated only
approximately, so the update H 'g will contain even more error than we would
predict from applying a poorly conditioned operation to the estimate of g.

It is also crucial that the minibatches be selected randomly. Computing an
unbiased estimate of the expected gradient from a set of samples requires that those
samples be independent. We also wish for two subsequent gradient estimates to be
independent from each other, so two subsequent minibatches of examples should
also be independent from each other. Many datasets are most naturally arranged
in a way where successive examples are highly correlated. For example, we might
have a dataset of medical data with a long list of blood sample test results. This
list might be arranged so that first we have five blood samples taken at different
times from the first patient, then we have three blood samples taken from the
second patient, then the blood samples from the third patient, and so on. If we
were to draw examples in order from this list, then each of our minibatches would
be extremely biased, because it would represent primarily one patient out of the
many patients in the dataset. In cases such as these where the order of the dataset
holds some significance, it is necessary to shuffle the examples before selecting
minibatches. For very large datasets, for example datasets containing billions of
examples in a data center, it can be impractical to sample examples truly uniformly
at random every time we want to construct a minibatch. Fortunately, in practice
it is usually sufficient to shuffle the order of the dataset once and then store it in
shuffled fashion. This will impose a fixed set of possible minibatches of consecutive
examples that all models trained thereafter will use, and each individual model
will be forced to reuse this ordering every time it passes through the training
data. However, this deviation from true random selection does not seem to have a
significant detrimental effect. Failing to ever shuffle the examples in any way can
seriously reduce the effectiveness of the algorithm.

Many optimization problems in machine learning decompose over examples
well enough that we can compute entire separate updates over different examples
in parallel. In other words, we can compute the update that minimizes J(X) for
one minibatch of examples X at the same time that we compute the update for
several other minibatches. Such asynchronous parallel distributed approaches are
discussed further in Sec. 12.1.3.

An interesting motivation for minibatch stochastic gradient descent is that it
follows the gradient of the true generalization error (Eq. 8.2) so long as no
examples are repeated. Most implementations of minibatch stochastic gradient

280



CHAPTER 8. OPTIMIZATION FOR TRAINING DEEP MODELS

descent shuffle the dataset once and then pass through it multiple times. On the
first pass, each minibatch is used to compute an unbiased estimate of the true
generalization error. On the second pass, the estimate becomes biased because it is
formed by re-sampling values that have already been used, rather than obtaining
new fair samples from the data generating distribution.

The fact that stochastic gradient descent minimizes generalization error is
easiest to see in the online learning case, where examples or minibatches are drawn
from a stream of data. In other words, instead of receiving a fixed-size training
set, the learner is similar to a living being who sees a new example at each instant,
with every example (@, y) coming from the data generating distribution p dats( @, y).
In this scenario, examples are never repeated; every experience is a fair sample
from Pdata-

The equivalence is easiest to derive when both @ and y are discrete. In this
case, the generalization error (Eq. 8.2) can be written as a sum

Z Zpdata € y f(CC 0) ) (87)

with the exact gradient

g = VBJ*(O) — Zzpdata(wa y)VGL(f(ma 9)7 y) (88)

We have already seen the same fact demonstrated for the log-likelihood in Eq. 8.5
and Eq. 8.6; we observe now that this holds for other functions L besides the
likelihood. A similar result can be derived when & and y are continuous, under
mild assumptions regarding pqata and L.

Hence, we can obtain an unbiased estimator of the exact gradient of the
generalization error by sampling a minibatch of examples {:13(1), . a:(m)} with cor-
responding targets y Y from the data generating distribution pqata, and computing
the gradient of the loss with respect to the parameters for that minibatch:

g :_VBZL 21 9), y®). (8.9)

Updating 6 in the direction of g performs SGD on the generalization error.

Of course, this interpretation only applies when examples are not reused.
Nonetheless, it is usually best to make several passes through the training set,
unless the training set is extremely large. When multiple such epochs are used,
only the first epoch follows the unbiased gradient of the generalization error, but
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of course, the additional epochs usually provide enough benefit due to decreased
training error to offset the harm they cause by increasing the gap between training
error and test error.

With some datasets growing rapidly in size, faster than computing power, it
is becoming more common for machine learning applications to use each training
example only once or even to make an incomplete pass through the training
set. When using an extremely large training set, overfitting is not an issue, so
underfitting and computational efficiency become the predominant concerns. See
also ( ) for a discussion of the effect of computational
bottlenecks on generalization error, as the number of training examples grows.

8.2 Challenges in Neural Network Optimization

Optimization in general is an extremely difficult task. Traditionally, machine
learning has avoided the difficulty of general optimization by carefully designing
the objective function and constraints to ensure that the optimization problem is
convex. When training neural networks, we must confront the general non-convex
case. Even convex optimization is not without its complications. In this section,
we summarize several of the most prominent challenges involved in optimization
for training deep models.

8.2.1 Ill-Conditioning

Some challenges arise even when optimizing convex functions. Of these, the most
prominent is ill-conditioning of the Hessian matrix H. This is a very general
problem in most numerical optimization, convex or otherwise, and is described in
more detail in Sec. 4.3.1.

The ill-conditioning problem is generally believed to be present in neural
network training problems. Ill-conditioning can manifest by causing SGD to get
“stuck” in the sense that even very small steps increase the cost function.

Recall from Eq. 4.9 that a second-order Taylor series expansion of the cost
function predicts that a gradient descent step of —eg will add

1
5 €g'Hg —eg'yg (8.10)
to the cost. Ill-conditioning of the gradient becomes a problem when %EQQTH g
exceeds €g' g. To determine whether ill-conditioning is detrimental to a neural

network training task, one can monitor the squared gradient norm g 'g and the
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Figure 8.1: Gradient descent often does not arrive at a critical point of any kind. In
this example, the gradient norm increases throughout training of a convolutional network
used for object detection. (Left) A scatterplot showing how the norms of individual
gradient evaluations are distributed over time. To improve legibility, only one gradient
norm is plotted per epoch. The running average of all gradient norms is plotted as a solid
curve. The gradient norm clearly increases over time, rather than decreasing as we would
expect if the training process converged to a critical point. (Right) Despite the increasing
gradient, the training process is reasonably successful. The validation set classification
error decreases to a low level.

g'Hg term. In many cases, the gradient norm does not shrink significantly
throughout learning, but the g" Hg term grows by more than order of magnitude.
The result is that learning becomes very slow despite the presence of a strong
gradient because the learning rate must be shrunk to compensate for even stronger
curvature. Fig. 8.1 shows an example of the gradient increasing significantly during
the successful training of a neural network.

Though ill-conditioning is present in other settings besides neural network
training, some of the techniques used to combat it in other contexts are less
applicable to neural networks. For example, Newton’s method is an excellent tool
for minimizing convex functions with poorly conditioned Hessian matrices, but in
the subsequent sections we will argue that Newton’s method requires significant
modification before it can be applied to neural networks.

8.2.2 Local Minima

One of the most prominent features of a convex optimization problem is that it
can be reduced to the problem of finding a local minimum. Any local minimum is
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guaranteed to be a global minimum. Some convex functions have a flat region at
the bottom rather than a single global minimum point, but any point within such
a flat region is an acceptable solution. When optimizing a convex function, we
know that we have reached a good solution if we find a critical point of any kind.

With non-convex functions, such as neural nets, it is possible to have many
local minima. Indeed, nearly any deep model is essentially guaranteed to have
an extremely large number of local minima. However, as we will see, this is not
necessarily a major problem.

Neural networks and any models with multiple equivalently parametrized latent
variables all have multiple local minima because of the model identifiability problem.
A model is said to be identifiable if a sufficiently large training set can rule out all
but one setting of the model’s parameters. Models with latent variables are often
not identifiable because we can obtain equivalent models by exchanging latent
variables with each other. For example, we could take a neural network and modify
layer 1 by swapping the incoming weight vector for unit: with the incoming weight
vector for unit 7, then doing the same for the outgoing weight vectors. If we have
m layers with n units each, then there are n!" ways of arranging the hidden units.
This kind of non-identifiability is known as weight space symmetry.

In addition to weight space symmetry, many kinds of neural networks have
additional causes of non-identifiability. For example, in any rectified linear or
maxout network, we can scale all of the incoming weights and biases of a unit by
« if we also scale all of its outgoing weights by 711 This means that—if the cost
function does not include terms such as weight decay that depend directly on the
weights rather than the models’ outputs—every local minimum of a rectified linear
or maxout network lies on an (m x n)-dimensional hyperbola of equivalent local
minima.

These model identifiability issues mean that there can be an extremely large
or even uncountably infinite amount of local minima in a neural network cost
function. However, all of these local minima arising from non-identifiability are
equivalent to each other in cost function value. As a result, these local minima are
not a problematic form of non-convexity.

Local minima can be problematic if they have high cost in comparison to the
global minimum. One can construct small neural networks, even without hidden
units, that have local minima with higher cost than the global minimum (

, ; : ; : ). If local minima
with high cost are common, this could pose a serious problem for gradient-based
optimization algorithms.

It remains an open question whether there are many local minima of high cost
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for networks of practical interest and whether optimization algorithms encounter
them. For many years, most practitioners believed that local minima were a
common problem plaguing neural network optimization. Today, that does not
appear to be the case. The problem remains an active area of research, but experts
now suspect that, for sufficiently large neural networks, most local minima have a
low cost function value, and that it is not important to find a true global minimum
rather than to find a point in parameter space that has low but not minimal cost
( , ; : ; : ;
: ).

Many practitioners attribute nearly all difficulty with neural network optimiza-
tion to local minima. We encourage practitioners to carefully test for specific
problems. A test that can rule out local minima as the problem is to plot the
norm of the gradient over time. If the norm of the gradient does not shrink to
insignificant size, the problem is neither local minima nor any other kind of critical
point. This kind of negative test can rule out local minima. In high dimensional
spaces, it can be very difficult to positively establish that local minima are the
problem. Many structures other than local minima also have small gradients.

8.2.3 Plateaus, Saddle Points and Other Flat Regions

For many high-dimensional non-convex functions, local minima (and maxima)
are in fact rare compared to another kind of point with zero gradient: a saddle
point. Some points around a saddle point have greater cost than the saddle point,
while others have a lower cost. At a saddle point, the Hessian matrix has both
positive and negative eigenvalues. Points lying along eigenvectors associated with
positive eigenvalues have greater cost than the saddle point, while points lying
along negative eigenvalues have lower value. We can think of a saddle point as
being a local minimum along one cross-section of the cost function and a local
maximum along another cross-section. See Fig. 4.5 for an illustration.

Many classes of random functions exhibit the following behavior: in low-
dimensional spaces, local minima are common. In higher dimensional spaces, local
minima are rare and saddle points are more common. For a function f: R™ — R of
this type, the expected ratio of the number of saddle points to local minima grows
exponentially with n. To understand the intuition behind this behavior, observe
that the Hessian matrix at a local minimum has only positive eigenvalues. The
Hessian matrix at a saddle point has a mixture of positive and negative eigenvalues.
Imagine that the sign of each eigenvalue is generated by flipping a coin. In a single
dimension, it is easy to obtain a local minimum by tossing a coin and getting heads
once. In n-dimensional space, it is exponentially unlikely that all n coin tosses will
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be heads. See ( ) for a review of the relevant theoretical work.

An amagzing property of many random functions is that the eigenvalues of the
Hessian become more likely to be positive as we reach regions of lower cost. In
our coin tossing analogy, this means we are more likely to have our coin come up
heads n times if we are at a critical point with low cost. This means that local
minima are much more likely to have low cost than high cost. Critical points with
high cost are far more likely to be saddle points. Critical points with extremely
high cost are more likely to be local maxima.

This happens for many classes of random functions. Does it happen for neural
networks? ( ) showed theoretically that shallow autoencoders
(feedforward networks trained to copy their input to their output, described in
Chapter 14) with no nonlinearities have global minima and saddle points but no
local minima with higher cost than the global minimum. They observed without
proof that these results extend to deeper networks without nonlinearities. The
output of such networks is a linear function of their input, but they are useful
to study as a model of nonlinear neural networks because their loss function is
a non-convex function of their parameters. Such networks are essentially just
multiple matrices composed together. ( ) provided exact solutions
to the complete learning dynamics in such networks and showed that learning in
these models captures many of the qualitative features observed in the training of

deep models with nonlinear activation functions. ( ) showed
experimentally that real neural networks also have loss functions that contain very
many high-cost saddle points. ( ) provided additional

theoretical arguments, showing that another class of high-dimensional random
functions related to neural networks does so as well.

What are the implications of the proliferation of saddle points for training algo-
rithms? For first-order optimization algorithms that use only gradient information,
the situation is unclear. The gradient can often become very small near a saddle
point. On the other hand, gradient descent empirically seems to be able to escape
saddle points in many cases. ( ) provided visualizations of
several learning trajectories of state-of-the-art neural networks, with an example
given in Fig. 8.2. These visualizations show a flattening of the cost function near
a prominent saddle point where the weights are all zero, but they also show the
gradient descent trajectory rapidly escaping this region. ( )
also argue that continuous-time gradient descent may be shown analytically to be
repelled from, rather than attracted to, a nearby saddle point, but the situation
may be different for more realistic uses of gradient descent.

For Newton’s method, it is clear that saddle points constitute a problem.
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(o)

Figure 8.2: A visualization of the cost function of a neural network. Image adapted
with permission from Goodfellow et al. (2015). These visualizations appear similar for
feedforward neural networks, convolutional networks, and recurrent networks applied
to real object recognition and natural language processing tasks. Surprisingly, these
visualizations usually do not show many conspicuous obstacles. Prior to the success of
stochastic gradient descent for training very large models beginning in roughly 2012,
neural net cost function surfaces were generally believed to have much more non-convex
structure than is revealed by these projections. The primary obstacle revealed by this
projection is a saddle point of high cost near where the parameters are initialized, but, as
indicated by the blue path, the SGD training trajectory escapes this saddle point readily.
Most of training time is spent traversing the relatively flat valley of the cost function,
which may be due to high noise in the gradient, poor conditioning of the Hessian matrix
in this region, or simply the need to circumnavigate the tall “mountain” visible in the
figure via an indirect arcing path.
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Gradient descent is designed to move “downhill” and is not explicitly designed
to seek a critical point. Newton’s method, however, is designed to solve for a
point where the gradient is zero. Without appropriate modification, it can jump
to a saddle point. The proliferation of saddle points in high dimensional spaces
presumably explains why second-order methods have not succeeded in replacing
gradient descent for neural network training. ( ) introduced
a saddle-free Newton method for second-order optimization and showed that it
improves significantly over the traditional version. Second-order methods remain
difficult to scale to large neural networks, but this saddle-free approach holds
promise if it could be scaled.

There are other kinds of points with zero gradient besides minima and saddle
points. There are also maxima, which are much like saddle points from the
perspective of optimization—many algorithms are not attracted to them, but
unmodified Newton’s method is. Maxima become exponentially rare in high
dimensional space, just like minima do.

There may also be wide, flat regions of constant value. In these locations, the
gradient and also the Hessian are all zero. Such degenerate locations pose major
problems for all numerical optimization algorithms. In a convex problem, a wide,
flat region must consist entirely of global minima, but in a general optimization
problem, such a region could correspond to a high value of the objective function.

8.2.4 Cliffs and Exploding Gradients

Neural networks with many layers often have extremely steep regions resembling
cliffs, as illustrated in Fig. 8.3. These result from the multiplication of several large
weights together. On the face of an extremely steep cliff structure, the gradient
update step can move the parameters extremely far, usually jumping off of the
cliff structure altogether.
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J(w,b)

Figure 8.3: The objective function for highly nonlinear deep neural networks or for
recurrent neural networks often contains sharp nonlinearities in parameter space resulting
from the multiplication of several parameters. These nonlinearities give rise to very
high derivatives in some places. When the parameters get close to such a cliff region, a
gradient descent update can catapult the parameters very far, possibly losing most of the
optimization work that had been done. Figure adapted with permission from

(2013a).

The cliff can be dangerous whether we approach it from above or from below,
but fortunately its most serious consequences can be avoided using the gradient
clipping heuristic described in Sec. 10.11.1. The basic idea is to recall that the
gradient does not specify the optimal step size, but only the optimal direction
within an infinitesimal region. When the traditional gradient descent algorithm
proposes to make a very large step, the gradient clipping heuristic intervenes to
reduce the step size to be small enough that it is less likely to go outside the region
where the gradient indicates the direction of approximately steepest descent. Cliff
structures are most common in the cost functions for recurrent neural networks,
because such models involve a multiplication of many factors, with one factor
for each time step. Long temporal sequences thus incur an extreme amount of

multiplication.

8.2.5 Long-Term Dependencies

Another difficulty that neural network optimization algorithms must overcome arises
when the computational graph becomes extremely deep. Feedforward networks
with many layers have such deep computational graphs. So do recurrent networks,
described in Chapter 10, which construct very deep computational graphs by
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repeatedly applying the same operation at each time step of a long temporal
sequence. Repeated application of the same parameters gives rise to especially
pronounced difficulties.

For example, suppose that a computational graph contains a path that consists
of repeatedly multiplying by a matrix W. After tsteps, this is equivalent to mul-
tiplying by W?. Suppose that W has an eigendecomposition W = Vdiag()\)V_l.
In this simple case, it is straightforward to see that

W' = (Vdiag A\) V1) = Vdiag(A)'V L. (8.11)

Any eigenvalues \; that are not near an absolute value of 1 will either explode if
they are greater than 1 in magnitude or vanish if they are less than 1 in magnitude.
The wvanishing and exploding gradient problem refers to the fact that gradients
through such a graph are also scaled according to diag(A)!. Vanishing gradients
make it difficult to know which direction the parameters should move to improve
the cost function, while exploding gradients can make learning unstable. The cliff
structures described earlier that motivate gradient clipping are an example of the
exploding gradient phenomenon.

The repeated multiplication by W at each time step described here is very
similar to the power method algorithm used to find the largest eigenvalue of a matrix
W and the corresponding eigenvector. From this point of view it is not surprising
that « T W? will eventually discard all components of  that are orthogonal to the
principal eigenvector of W.

Recurrent networks use the same matrix W at each time step, but feedforward
networks do not, so even very deep feedforward networks can largely avoid the
vanishing and exploding gradient problem ( , ).

We defer a further discussion of the challenges of training recurrent networks
until Sec. 10.7, after recurrent networks have been described in more detail.

8.2.6 Inexact Gradients

Most optimization algorithms are primarily motivated by the case where we have
exact knowledge of the gradient or Hessian matrix. In practice, we usually only
have a noisy or even biased estimate of these quantities. Nearly every deep learning
algorithm relies on sampling-based estimates at least insofar as using a minibatch
of training examples to compute the gradient.

In other cases, the objective function we want to minimize is actually intractable.
When the objective function is intractable, typically its gradient is intractable as
well. In such cases we can only approximate the gradient. These issues mostly arise
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with the more advanced models in Part III. For example, contrastive divergence
gives a technique for approximating the gradient of the intractable log-likelihood
of a Boltzmann machine.

Various neural network optimization algorithms are designed to account for
imperfections in the gradient estimate. One can also avoid the problem by choosing
a surrogate loss function that is easier to approximate than the true loss.

8.2.7 Poor Correspondence between Local and Global Structure

Many of the problems we have discussed so far correspond to properties of the
loss function at a single point—it can be difficult to make a single step if J(0) is
poorly conditioned at the current point 0, or if @ lies on a cliff, or if 8 is a saddle
point hiding the opportunity to make progress downhill from the gradient.

It is possible to overcome all of these problems at a single point and still
perform poorly if the direction that results in the most improvement locally does
not point toward distant regions of much lower cost.

( ) argue that much of the runtime of training is due to
the length of the trajectory needed to arrive at the solution. Fig. 8.2 shows that
the learning trajectory spends most of its time tracing out a wide arc around a
mountain-shaped structure.

Much of research into the difficulties of optimization has focused on whether
training arrives at a global minimum, a local minimum, or a saddle point, but in
practice neural networks do not arrive at a critical point of any kind. Fig. 8.1
shows that neural networks often do not arrive at a region of small gradient. Indeed,
such critical points do not even necessarily exist. For example, the loss function
—logp(y | ;0) can lack a global minimum point and instead asymptotically
approach some value as the model becomes more confident. For a classifier with
discrete y and p(y | @) provided by a softmax, the negative log-likelihood can
become arbitrarily close to zero if the model is able to correctly classify every
example in the training set, but it is impossible to actually reach the value of
zero. Likewise, a model of real values p(y | ) = N (y; £(8), 57 1) can have negative
log-likelihood that asymptotes to negative infinity—if f(6) is able to correctly
predict the value of all training set y targets, the learning algorithm will increase
[ without bound. See Fig. 8.4 for an example of a failure of local optimization to
find a good cost function value even in the absence of any local minima or saddle
points.

Future research will need to develop further understanding of the factors that
influence the length of the learning trajectory and better characterize the outcome
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Figure 8.4: Optimization based on local downhill moves can fail if the local surface does
not point toward the global solution. Here we provide an example of how this can occur,
even if there are no saddle points and no local minima. This example cost function
contains only asymptotes toward low values, not minima. The main cause of difficulty in
this case is being initialized on the wrong side of the “mountain” and not being able to
traverse it. In higher dimensional space, learning algorithms can often circumnavigate
such mountains but the trajectory associated with doing so may be long and result in
excessive training time, as illustrated in Fig. 8.2.

of the process.

Many existing research directions are aimed at finding good initial points for
problems that have difficult global structure, rather than developing algorithms
that use non-local moves.

Gradient descent and essentially all learning algorithms that are effective for
training neural networks are based on making small, local moves. The previous
sections have primarily focused on how the correct direction of these local moves
can be difficult to compute. We may be able to compute some properties of the
objective function, such as its gradient, only approximately, with bias or variance
in our estimate of the correct direction. In these cases, local descent may or may
not define a reasonably short path to a valid solution, but we are not actually
able to follow the local descent path. The objective function may have issues
such as poor conditioning or discontinuous gradients, causing the region where
the gradient provides a good model of the objective function to be very small. In
these cases, local descent with steps of size € may define a reasonably short path
to the solution, but we are only able to compute the local descent direction with
steps of size § < €. In these cases, local descent may or may not define a path
to the solution, but the path contains many steps, so following the path incurs a
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high computational cost. Sometimes local information provides us no guide, when
the function has a wide flat region, or if we manage to land exactly on a critical
point (usually this latter scenario only happens to methods that solve explicitly
for critical points, such as Newton’s method). In these cases, local descent does
not define a path to a solution at all. In other cases, local moves can be too greedy
and lead us along a path that moves downhill but away from any solution, as in
Fig. 8.4, or along an unnecessarily long trajectory to the solution, as in Fig. 8.2.
Currently, we do not understand which of these problems are most relevant to
making neural network optimization difficult, and this is an active area of research.

Regardless of which of these problems are most significant, all of them might be
avoided if there exists a region of space connected reasonably directly to a solution
by a path that local descent can follow, and if we are able to initialize learning
within that well-behaved region. This last view suggests research into choosing
good initial points for traditional optimization algorithms to use.

8.2.8 Theoretical Limits of Optimization

Several theoretical results show that there are limits on the performance of any
optimization algorithm we might design for neural networks ( )

: , : , ). Typically these results have
little bearing on the use of neural networks in practice.

Some theoretical results apply only to the case where the units of a neural
network output discrete values. However, most neural network units output
smoothly increasing values that make optimization via local search feasible. Some
theoretical results show that there exist problem classes that are intractable, but
it can be difficult to tell whether a particular problem falls into that class. Other
results show that finding a solution for a network of a given size is intractable, but
in practice we can find a solution easily by using a larger network for which many
more parameter settings correspond to an acceptable solution. Moreover, in the
context of neural network training, we usually do not care about finding the exact
minimum of a function, but only in reducing its value sufficiently to obtain good
generalization error. Theoretical analysis of whether an optimization algorithm
can accomplish this goal is extremely difficult. Developing more realistic bounds
on the performance of optimization algorithms therefore remains an important
goal for machine learning research.
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8.3 Basic Algorithms

We have previously introduced the gradient descent (Sec. 4.3) algorithm that
follows the gradient of an entire training set downhill. This may be accelerated
considerably by using stochastic gradient descent to follow the gradient of randomly
selected minibatches downhill, as discussed in Sec. 5.9 and Sec. 8.1.3.

8.3.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) and its variants are probably the most used
optimization algorithms for machine learning in general and for deep learning in
particular. As discussed in Sec. 8.1.3, it is possible to obtain an unbiased estimate
of the gradient by taking the average gradient on a minibatch of m examples drawn
i.i.d from the data generating distribution.

Algorithm 8.1 shows how to follow this estimate of the gradient downhill.

Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate €.
Require: Initial parameter 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {m(l), RO (m)} with
corresponding targets y*.
Compute gradient estimate: g < —1—71nV9 > L(f(z";0),y")
Apply update: 0 + 0 — eg
end while

A crucial parameter for the SGD algorithm is the learning rate. Previously, we
have described SGD as using a fixed learning rate €. In practice, it is necessary to
gradually decrease the learning rate over time, so we now denote the learning rate
at iteration k as €.

This is because the SGD gradient estimator introduces a source of noise (the
random sampling of m training examples) that does not vanish even when we arrive
at a minimum. By comparison, the true gradient of the total cost function becomes
small and then 0 when we approach and reach a minimum using batch gradient
descent, so batch gradient descent can use a fixed learning rate. A sufficient
condition to guarantee convergence of SGD is that

Y er=00, and (8.12)
k=1
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Y < oo (8.13)

k=1
In practice, it is common to decay the learning rate linearly until iteration 7:
exr = (1 — a)eg + aer (8.14)

with a = %‘f . After iteration 7, it is common to leave € constant.

The learning rate may be chosen by trial and error, but it is usually best
to choose it by monitoring learning curves that plot the objective function as a
function of time. This is more of an art than a science, and most guidance on this
subject should be regarded with some skepticism. When using the linear schedule,
the parameters to choose are €, ¢, and 7. Usually 7 may be set to the number of
iterations required to make a few hundred passes through the training set. Usually
¢, should be set to roughly 1% the value of €¢y. The main question is how to set €.
If it is too large, the learning curve will show violent oscillations, with the cost
function often increasing significantly. Gentle oscillations are fine, especially if
training with a stochastic cost function such as the cost function arising from the
use of dropout. If the learning rate is too low, learning proceeds slowly, and if the
initial learning rate is too low, learning may become stuck with a high cost value.
Typically, the optimal initial learning rate, in terms of total training time and the
final cost value, is higher than the learning rate that yields the best performance
after the first 100 iterations or so. Therefore, it is usually best to monitor the first
several iterations and use a learning rate that is higher than the best-performing
learning rate at this time, but not so high that it causes severe instability.

The most important property of SGD and related minibatch or online gradient-
based optimization is that computation time per update does not grow with the
number of training examples. This allows convergence even when the number
of training examples becomes very large. For a large enough dataset, SGD may
converge to within some fixed tolerance of its final test set error before it has
processed the entire training set.

To study the convergence rate of an optimization algorithm it is common to
measure the excess error J(0) — ming J (@), which is the amount that the current
cost function exceeds the minimum possible cost. When SGD is applied to a convex

problem, the excess error is O (\_}Tc) after k iterations, while in the strongly convex

case 1t 1s O(—}{) These bounds cannot be improved unless extra conditions are

assumed. Batch gradient descent enjoys better convergence rates than stochastic
gradient descent in theory. However, the Cramér-Rao bound ( , ; ,
) states that generalization error cannot decrease faster than 0(716)
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( ) argue that it therefore may not be worthwhile to pursue
an optimization algorithm that converges faster than O(Tlc) for machine learning
tasks—faster convergence presumably corresponds to overfitting. Moreover, the
asymptotic analysis obscures many advantages that stochastic gradient descent
has after a small number of steps. With large datasets, the ability of SGD to make
rapid initial progress while evaluating the gradient for only very few examples
outweighs its slow asymptotic convergence. Most of the algorithms described in
the remainder of this chapter achieve benefits that matter in practice but are lost
in the constant factors obscured by the O(Tlc) asymptotic analysis. One can also
trade off the benefits of both batch and stochastic gradient descent by gradually
increasing the minibatch size during the course of learning.

For more information on SGD, see ( ).

8.3.2 Momentum

While stochastic gradient descent remains a very popular optimization strategy,
learning with it can sometimes be slow. The method of momentum ( : )
is designed to accelerate learning, especially in the face of high curvature, small but
consistent gradients, or noisy gradients. The momentum algorithm accumulates
an exponentially decaying moving average of past gradients and continues to move
in their direction. The effect of momentum is illustrated in Fig. 8.5.

Formally, the momentum algorithm introduces a variable v that plays the role
of velocity—it is the direction and speed at which the parameters move through
parameter space. The velocity is set to an exponentially decaying average of
the negative gradient. The name momentum derives from a physical analogy, in
which the negative gradient is a force moving a particle through parameter space,
according to Newton’s laws of motion. Momentum in physics is mass times velocity.
In the momentum learning algorithm, we assume unit mass, so the velocity vector v
may also be regarded as the momentum of the particle. A hyperparameter o € [0,1)
determines how quickly the contributions of previous gradients exponentially decay.
The update rule is given by:

v av—eVp ( ZL () 9) y@)) (8.15)

0+ 0+wv. (8.16)

The velocity v accumulates the gradient elements Vg (L S L(f(z();6),y)).
The larger « is relative to €, the more previous gradients affect the current direction.
The SGD algorithm with momentum is given in Algorithm 8.2.
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Figure 8.5: Momentum aims primarily to solve two problems: poor conditioning of the
Hessian matrix and variance in the stochastic gradient. Here, we illustrate how momentum
overcomes the first of these two problems. The contour lines depict a quadratic loss
function with a poorly conditioned Hessian matrix. The red path cutting across the
contours indicates the path followed by the momentum learning rule as it minimizes this
function. At each step along the way, we draw an arrow indicating the step that gradient
descent would take at that point. We can see that a poorly conditioned quadratic objective
looks like a long, narrow valley or canyon with steep sides. Momentum correctly traverses
the canyon lengthwise, while gradient steps waste time moving back and forth across the
narrow axis of the canyon. Compare also Fig. 4.6, which shows the behavior of gradient
descent without momentum.
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Previously, the size of the step was simply the norm of the gradient multiplied
by the learning rate. Now, the size of the step depends on how large and how
aligned a sequence of gradients are. The step size is largest when many successive
gradients point in exactly the same direction. If the momentum algorithm always
observes gradient g, then it will accelerate in the direction of —g, until reaching a
terminal velocity where the size of each step is

llgll
. 8.17
T a (8.17)

It is thus helpful to think of the momentum hyperparameter in terms of 1_£a For
example, @ = .9 corresponds to multiplying the maximum speed by 10 relative to
the gradient descent algorithm.

Common values of o used in practice include .5, 9, and .99. Like the learning
rate, & may also be adapted over time. Typically it begins with a small value and
is later raised. It is less important to adapt o over time than to shrink € over time.

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate ¢, momentum parameter a.
Require: Initial parameter 0, initial velocity v.
while stopping criterion not met do
Sample a minibatch of m examples from the training set {x(1), ..., 2™} with
corresponding targets y(?).
Compute gradient estimate: g < = Vg > L(f(z¥;0), y?)
Compute velocity update: v < av — eg
Apply update: @ < 6 +v
end while

We can view the momentum algorithm as simulating a particle subject to
continuous-time Newtonian dynamics. The physical analogy can help to build
intuition for how the momentum and gradient descent algorithms behave.

The position of the particle at any point in time is given by @(t). The particle
experiences net force f(t). This force causes the particle to accelerate:
82
ft) = W@(t). (8.18)
Rather than viewing this as a second-order differential equation of the position,
we can introduce the variable v(t) representing the velocity of the particle at time
t and rewrite the Newtonian dynamics as a first-order differential equation:

o(t) = gt o(t), (8.19)
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F(t) = gt u(t). (8.20)

The momentum algorithm then consists of solving the differential equations via
numerical simulation. A simple numerical method for solving differential equations
is Euler’s method, which simply consists of simulating the dynamics defined by
the equation by taking small, finite steps in the direction of each gradient.

This explains the basic form of the momentum update, but what specifically are
the forces? One force is proportional to the negative gradient of the cost function:
—VpJ (0). This force pushes the particle downhill along the cost function surface.
The gradient descent algorithm would simply take a single step based on each
gradient, but the Newtonian scenario used by the momentum algorithm instead
uses this force to alter the velocity of the particle. We can think of the particle
as being like a hockey puck sliding down an icy surface. Whenever it descends a
steep part of the surface, it gathers speed and continues sliding in that direction
until it begins to go uphill again.

One other force is necessary. If the only force is the gradient of the cost function,
then the particle might never come to rest. Imagine a hockey puck sliding down
one side of a valley and straight up the other side, oscillating back and forth forever,
assuming the ice is perfectly frictionless. To resolve this problem, we add one
other force, proportional to —wv(t). In physics terminology, this force corresponds
to viscous drag, as if the particle must push through a resistant medium such as
syrup. This causes the particle to gradually lose energy over time and eventually
converge to a local minimum.

Why do we use —v(t) and viscous drag in particular? Part of the reason to
use —(t) is mathematical convenience—an integer power of the velocity is easy
to work with. However, other physical systems have other kinds of drag based
on other integer powers of the velocity. For example, a particle traveling through
the air experiences turbulent drag, with force proportional to the square of the
velocity, while a particle moving along the ground experiences dry friction, with a
force of constant magnitude. We can reject each of these options. Turbulent drag,
proportional to the square of the velocity, becomes very weak when the velocity is
small. It is not powerful enough to force the particle to come to rest. A particle
with a non-zero initial velocity that experiences only the force of turbulent drag
will move away from its initial position forever, with the distance from the starting
point growing like O(logt). We must therefore use a lower power of the velocity.
If we use a power of zero, representing dry friction, then the force is too strong.
When the force due to the gradient of the cost function is small but non-zero, the
constant force due to friction can cause the particle to come to rest before reaching
a local minimum. Viscous drag avoids both of these problems—it is weak enough
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that the gradient can continue to cause motion until a minimum is reached, but
strong enough to prevent motion if the gradient does not justify moving.

8.3.3 Nesterov Momentum

( ) introduced a variant of the momentum algorithm that was
inspired by Nesterov’s accelerated gradient method ( ) , ). The
update rules in this case are given by:

1 , :

v < av — eV —ZL(f(:B(Z);()—Fav),y(z))] : (8.21)
i

0 <— 0+ v, (8.22)

where the parameters « and € play a similar role as in the standard momentum
method. The difference between Nesterov momentum and standard momentum is
where the gradient is evaluated. With Nesterov momentum the gradient is evaluated
after the current velocity is applied. Thus one can interpret Nesterov momentum
as attempting to add a correction factor to the standard method of momentum.
The complete Nesterov momentum algorithm is presented in Algorithm 8.3.

In the convex batch gradient case, Nesterov momentum brings the rate of
convergence of the excess error from O(1/k) (after k steps) to O(1/k?) as shown
by ( ). Unfortunately, in the stochastic gradient case, Nesterov
momentum does not improve the rate of convergence.

Algorithm 8.3 Stochastic gradient descent (SGD) with Nesterov momentum

Require: Learning rate €, momentum parameter a.
Require: Initial parameter 0, initial velocity v.
while stopping criterion not met do
Sample a minibatch of m examples from the training set {1, ..., (™} with
corresponding labels y(®.
Apply interim update: 6 « 6 + av
Compute gradient (at interim point): g < V> L(f(z®; 6),y®)
Compute velocity update: v < av — eg
Apply update: @ < 0 +v
end while
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8.4 Parameter Initialization Strategies

Some optimization algorithms are not iterative by nature and simply solve for a
solution point. Other optimization algorithms are iterative by nature but, when
applied to the right class of optimization problems, converge to acceptable solutions
in an acceptable amount of time regardless of initialization. Deep learning training
algorithms usually do not have either of these luxuries. Training algorithms for deep
learning models are usually iterative in nature and thus require the user to specify
some initial point from which to begin the iterations. Moreover, training deep
models is a sufficiently difficult task that most algorithms are strongly affected by
the choice of initialization. The initial point can determine whether the algorithm
converges at all, with some initial points being so unstable that the algorithm
encounters numerical difficulties and fails altogether. When learning does converge,
the initial point can determine how quickly learning converges and whether it
converges to a point with high or low cost. Also, points of comparable cost
can have wildly varying generalization error, and the initial point can affect the
generalization as well.

Modern initialization strategies are simple and heuristic. Designing improved
initialization strategies is a difficult task because neural network optimization is
not yet well understood. Most initialization strategies are based on achieving some
nice properties when the network is initialized. However, we do not have a good
understanding of which of these properties are preserved under which circumstances
after learning begins to proceed. A further difficulty is that some initial points
may be beneficial from the viewpoint of optimization but detrimental from the
viewpoint of generalization. Our understanding of how the initial point affects
generalization is especially primitive, offering little to no guidance for how to select
the initial point.

Perhaps the only property known with complete certainty is that the initial
parameters need to “break symmetry” between different units. If two hidden
units with the same activation function are connected to the same inputs, then
these units must have different initial parameters. If they have the same initial
parameters, then a deterministic learning algorithm applied to a deterministic cost
and model will constantly update both of these units in the same way. Even if the
model or training algorithm is capable of using stochasticity to compute different
updates for different units (for example, if one trains with dropout), it is usually
best to initialize each unit to compute a different function from all of the other
units. This may help to make sure that no input patterns are lost in the null
space of forward propagation and no gradient patterns are lost in the null space
of back-propagation. The goal of having each unit compute a different function
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motivates random initialization of the parameters. We could explicitly search
for a large set of basis functions that are all mutually different from each other,
but this often incurs a noticeable computational cost. For example, if we have at
most as many outputs as inputs, we could use Gram-Schmidt orthogonalization
on an initial weight matrix, and be guaranteed that each unit computes a very
different function from each other unit. Random initialization from a high-entropy
distribution over a high-dimensional space is computationally cheaper and unlikely
to assign any units to compute the same function as each other.

Typically, we set the biases for each unit to heuristically chosen constants, and
initialize only the weights randomly. Extra parameters, for example, parameters
encoding the conditional variance of a prediction, are usually set to heuristically
chosen constants much like the biases are.

We almost always initialize all the weights in the model to values drawn
randomly from a Gaussian or uniform distribution. The choice of Gaussian
or uniform distribution does not seem to matter very much, but has not been
exhaustively studied. The scale of the initial distribution, however, does have a
large effect on both the outcome of the optimization procedure and on the ability
of the network to generalize.

Larger initial weights will yield a stronger symmetry breaking effect, helping
to avoid redundant units. They also help to avoid losing signal during forward or
back-propagation through the linear component of each layer—Ilarger values in the
matrix result in larger outputs of matrix multiplication. Initial weights that are
too large may, however, result in exploding values during forward propagation or
back-propagation. In recurrent networks, large weights can also result in chaos
(such extreme sensitivity to small perturbations of the input that the behavior
of the deterministic forward propagation procedure appears random). To some
extent, the exploding gradient problem can be mitigated by gradient clipping
(thresholding the values of the gradients before performing a gradient descent step).
Large weights may also result in extreme values that cause the activation function
to saturate, causing complete loss of gradient through saturated units. These
competing factors determine the ideal initial scale of the weights.

The perspectives of regularization and optimization can give very different
insights into how we should initialize a network. The optimization perspective
suggests that the weights should be large enough to propagate information success-
fully, but some regularization concerns encourage making them smaller. The use
of an optimization algorithm such as stochastic gradient descent that makes small
incremental changes to the weights and tends to halt in areas that are nearer to
the initial parameters (whether due to getting stuck in a region of low gradient, or
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due to triggering some early stopping criterion based on overfitting) expresses a
prior that the final parameters should be close to the initial parameters. Recall
from Sec. 7.8 that gradient descent with early stopping is equivalent to weight
decay for some models. In the general case, gradient descent with early stopping is
not the same as weight decay, but does provide a loose analogy for thinking about
the effect of initialization. We can think of initializing the parameters @ to 0 as
being similar to imposing a Gaussian prior p(6) with mean y. From this point
of view, it makes sense to choose 6y to be near 0. This prior says that it is more
likely that units do not interact with each other than that they do interact. Units
interact only if the likelihood term of the objective function expresses a strong
preference for them to interact. On the other hand, if we initialize 8¢ to large
values, then our prior specifies which units should interact with each other, and
how they should interact.

Some heuristics are available for choosing the initial scale of the weights. One
heuristic is to initialize the weights of a fully connected layer with m inputs and
n outputs by sampling each weight from U (—\/—% , \/—17n ), while

( ) suggest using the normalized initialization
6 6
Wi~ U , . 8.23
%] ( \/m +n \/m T+ n) ( )

This latter heuristic is designed to compromise between the goal of initializing
all layers to have the same activation variance and the goal of initializing all
layers to have the same gradient variance. The formula is derived using the
assumption that the network consists only of a chain of matrix multiplications,
with no nonlinearities. Real neural networks obviously violate this assumption,
but many strategies designed for the linear model perform reasonably well on its
nonlinear counterparts.

( ) recommend initializing to random orthogonal matrices, with
a carefully chosen scaling or gain factor g that accounts for the nonlinearity applied
at each layer. They derive specific values of the scaling factor for different types of
nonlinear activation functions. This initialization scheme is also motivated by a
model of a deep network as a sequence of matrix multiplies without nonlinearities.
Under such a model, this initialization scheme guarantees that the total number of
training iterations required to reach convergence is independent of depth.

Increasing the scaling factor g pushes the network toward the regime where
activations increase in norm as they propagate forward through the network and
gradients increase in norm as they propagate backward. ( ) showed
that setting the gain factor correctly is sufficient to train networks as deep as
1,000 layers, without needing to use orthogonal initializations. A key insight of
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this approach is that in feedforward networks, activations and gradients can grow
or shrink on each step of forward or back-propagation, following a random walk
behavior. This is because feedforward networks use a different weight matrix at
each layer. If this random walk is tuned to preserve norms, then feedforward
networks can mostly avoid the vanishing and exploding gradients problem that
arises when the same weight matrix is used at each step, described in Sec. 8.2.5.

Unfortunately, these optimal criteria for initial weights often do not lead to
optimal performance. This may be for three different reasons. First, we may
be using the wrong criteria—it may not actually be beneficial to preserve the
norm of a signal throughout the entire network. Second, the properties imposed
at initialization may not persist after learning has begun to proceed. Third, the
criteria might succeed at improving the speed of optimization but inadvertently
increase generalization error. In practice, we usually need to treat the scale of the
weights as a hyperparameter whose optimal value lies somewhere roughly near but
not exactly equal to the theoretical predictions.

One drawback to scaling rules that set all of the initial weights to have the same

standard deviation, such as ——, is that every individual weight becomes extremely

™’
small when the layers becoxn/;e large. ( ) introduced an alternative
initialization scheme called sparse initialization in which each unit is initialized to
have exactly k non-zero weights. The idea is to keep the total amount of input to
the unit independent from the number of inputs m without making the magnitude
of individual weight elements shrink with m. Sparse initialization helps to achieve
more diversity among the units at initialization time. However, it also imposes
a very strong prior on the weights that are chosen to have large Gaussian values.
Because it takes a long time for gradient descent to shrink “incorrect” large values,
this initialization scheme can cause problems for units such as maxout units that

have several filters that must be carefully coordinated with each other.

When computational resources allow it, it is usually a good idea to treat the
initial scale of the weights for each layer as a hyperparameter, and to choose these
scales using a hyperparameter search algorithm described in Sec. 11.4.2, such
as random search. The choice of whether to use dense or sparse initialization
can also be made a hyperparameter. Alternately, one can manually search for
the best initial scales. A good rule of thumb for choosing the initial scales is to
look at the range or standard deviation of activations or gradients on a single
minibatch of data. If the weights are too small, the range of activations across the
minibatch will shrink as the activations propagate forward through the network.
By repeatedly identifying the first layer with unacceptably small activations and
increasing its weights, it is possible to eventually obtain a network with reasonable
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initial activations throughout. If learning is still too slow at this point, it can be
useful to look at the range or standard deviation of the gradients as well as the
activations. This procedure can in principle be automated and is generally less
computationally costly than hyperparameter optimization based on validation set
error because it is based on feedback from the behavior of the initial model on a
single batch of data, rather than on feedback from a trained model on the validation
set. While long used heuristically, this protocol has recently been specified more
formally and studied by ( ).

So far we have focused on the initialization of the weights. Fortunately,
initialization of other parameters is typically easier.

The approach for setting the biases must be coordinated with the approach
for settings the weights. Setting the biases to zero is compatible with most weight
initialization schemes. There are a few situations where we may set some biases to
non-zero values:

e If a bias is for an output unit, then it is often beneficial to initialize the bias to
obtain the right marginal statistics of the output. To do this, we assume that
the initial weights are small enough that the output of the unit is determined
only by the bias. This justifies setting the bias to the inverse of the activation
function applied to the marginal statistics of the output in the training set.
For example, if the output is a distribution over classes and this distribution
is a highly skewed distribution with the marginal probability of class ¢ given
by element ¢; of some vector ¢, then we can set the bias vector b by solving
the equation softmax(b) = ¢. This applies not only to classifiers but also to
models we will encounter in Part I1I, such as autoencoders and Boltzmann
machines. These models have layers whose output should resemble the input
data @, and it can be very helpful to initialize the biases of such layers to
match the marginal distribution over x.

e Sometimes we may want to choose the bias to avoid causing too much
saturation at initialization. For example, we may set the bias of a ReLLU
hidden unit to 0.1 rather than 0 to avoid saturating the ReLLU at initialization.
This approach is not compatible with weight initialization schemes that do
not expect strong input from the biases though. For example, it is not
recommended for use with random walk initialization ( : ).

e Sometimes a unit controls whether other units are able to participate in a
function. In such situations, we have a unit with output v and another unit
h € [0,1], then we can view h as a gate that determines whether uh ~ 1 or
uh ~ 0. In these situations, we want to set the bias for A so that h ~1 most

305



CHAPTER 8. OPTIMIZATION FOR TRAINING DEEP MODELS

of the time at initialization. Otherwise u does not have a chance to learn.
For example, ( ) advocate setting the bias to 1 for the
forget gate of the LSTM model, described in Sec. 10.10.

Another common type of parameter is a variance or precision parameter. For
example, we can perform linear regression with a conditional variance estimate
using the model

p(y|2) =N(y | w'z+b1/8) (8.24)

where [ is a precision parameter. We can usually initialize variance or precision
parameters to 1 safely. Another approach is to assume the initial weights are close
enough to zero that the biases may be set while ignoring the effect of the weights,
then set the biases to produce the correct marginal mean of the output, and set
the variance parameters to the marginal variance of the output in the training set.

Besides these simple constant or random methods of initializing model parame-
ters, it is possible to initialize model parameters using machine learning. A common
strategy discussed in Part III of this book is to initialize a supervised model with
the parameters learned by an unsupervised model trained on the same inputs.
One can also perform supervised training on a related task. Even performing
supervised training on an unrelated task can sometimes yield an initialization that
offers faster convergence than a random initialization. Some of these initialization
strategies may yield faster convergence and better generalization because they
encode information about the distribution in the initial parameters of the model.
Others apparently perform well primarily because they set the parameters to have
the right scale or set different units to compute different functions from each other.

8.5 Algorithms with Adaptive Learning Rates

Neural network researchers have long realized that the learning rate was reliably one
of the hyperparameters that is the most difficult to set because it has a significant
impact on model performance. As we have discussed in Sec. 4.3 and Sec. 8.2, the
cost is often highly sensitive to some directions in parameter space and insensitive
to others. The momentum algorithm can mitigate these issues somewhat, but
does so at the expense of introducing another hyperparameter. In the face of this,
it is natural to ask if there is another way. If we believe that the directions of
sensitivity are somewhat axis-aligned, it can make sense to use a separate learning
rate for each parameter, and automatically adapt these learning rates throughout
the course of learning.
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The delta-bar-delta algorithm ( , ) is an early heuristic approach
to adapting individual learning rates for model parameters during training. The
approach is based on a simple idea: if the partial derivative of the loss, with respect
to a given model parameter, remains the same sign, then the learning rate should
increase. If the partial derivative with respect to that parameter changes sign,
then the learning rate should decrease. Of course, this kind of rule can only be
applied to full batch optimization.

More recently, a number of incremental (or mini-batch-based) methods have
been introduced that adapt the learning rates of model parameters. This section
will briefly review a few of these algorithms.

8.5.1 AdaGrad

The AdaGrad algorithm, shown in Algorithm 8.4, individually adapts the learning
rates of all model parameters by scaling them inversely proportional to the square
root of the sum of all of their historical squared values ( : ). The
parameters with the largest partial derivative of the loss have a correspondingly
rapid decrease in their learning rate, while parameters with small partial derivatives
have a relatively small decrease in their learning rate. The net effect is greater
progress in the more gently sloped directions of parameter space.

In the context of convex optimization, the AdaGrad algorithm enjoys some
desirable theoretical properties. However, empirically it has been found that—for
training deep neural network models—the accumulation of squared gradients from
the beginning of training can result in a premature and excessive decrease
in the effective learning rate. AdaGrad performs well for some but not all deep
learning models.

8.5.2 RMSProp

The RMSProp algorithm ( : ) modifies AdaGrad to perform better in the
non-convex setting by changing the gradient accumulation into an exponentially
weighted moving average. AdaGrad is designed to converge rapidly when applied
to a convex function. When applied to a non-convex function to train a neural
network, the learning trajectory may pass through many different structures and
eventually arrive at a region that is a locally convex bowl. AdaGrad shrinks the
learning rate according to the entire history of the squared gradient and may
have made the learning rate too small before arriving at such a convex structure.
RMSProp uses an exponentially decaying average to discard history from the
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Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate €

Require: Initial parameter 0

Require: Small constant &, perhaps 10~7, for numerical stability

Initialize gradient accumulation variable » = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {:1:(1), e ,w(m)} with
corresponding targets y(i).
Compute gradient: g < —T;Vg S L(f(2@;0), y™)
Accumulate squared gradient: r < r+g® g
Compute update: A0 + _f\/? ® g. (Division and square root applied
element-wise)
Apply update: @ < 6 + A@
end while

extreme past so that it can converge rapidly after finding a convex bowl, as if it
were an instance of the AdaGrad algorithm initialized within that bowl.

RMSProp is shown in its standard form in Algorithm 8.5 and combined with
Nesterov momentum in Algorithm 8.6. Compared to AdaGrad, the use of the
moving average introduces a new hyperparameter, p, that controls the length scale
of the moving average.

Empirically, RMSProp has been shown to be an effective and practical op-
timization algorithm for deep neural networks. It is currently one of the go-to
optimization methods being employed routinely by deep learning practitioners.

8.5.3 Adam

Adam ( , ) is yet another adaptive learning rate optimization
algorithm and is presented in Algorithm 8.7. The name “Adam” derives from
the phrase “adaptive moments.” In the context of the earlier algorithms, it is
perhaps best seen as a variant on the combination of RMSProp and momentum
with a few important distinctions. First, in Adam, momentum is incorporated
directly as an estimate of the first order moment (with exponential weighting) of
the gradient. The most straightforward way to add momentum to RMSProp is to
apply momentum to the rescaled gradients. The use of momentum in combination
with rescaling does not have a clear theoretical motivation. Second, Adam includes
bias corrections to the estimates of both the first-order moments (the momentum
term) and the (uncentered) second-order moments to account for their initial<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>